Mitigating time-dependent crack growth in Ni-base superalloy components

Kwai S. Chan a,*, Michael P. Enright a, Jonathan Moody a, Simeon H.K. Fitch b

a Southwest Research Institute, San Antonio, TX 78238, USA
b Elder Research Inc., Charlottesville, VA 22903, USA

Article info
Article history:
Received 21 October 2014
Received in revised form 27 February 2015
Accepted 25 March 2015
Available online 2 April 2015

Keywords:
Time-dependent crack growth
Dwell fatigue
Small-scale creep
Life-prediction
Risk mitigation

Abstract
Advanced Ni-based gas turbine disks are expected to operate at higher service temperatures in aggressive environments for longer time durations. Exposures of Ni-base alloys to these aggressive environments can lead to cycle-dependent and time-dependent crack growth in superalloy components for advanced turbopropulsion systems. In this article, the effects of tertiary \(\gamma' \) on the crack-tip stress relaxation process, oxide fracture and time-dependent crack growth kinetics are treated in a micromechanical model which is then incorporated into the DARWIN\(^*\) probabilistic life-prediction code. Using the enhanced risk analysis tool and material constants calibrated to powder-metallurgy (PM) disk alloy ME3, the effects of grain size and tertiary \(\gamma' \) size on combined time-dependent and cycle-dependent crack growth in a PM Ni-alloy disk is demonstrated for a generic rotor design and a realistic mission profile using DARWIN. The results of this investigation are utilized to assess the effects of controlling grain size and \(\gamma' \) size on the risk of disk fracture and to identify possible means for mitigating time-dependent crack growth (TDGC) in hot-section components.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Hot-section components in advanced turbopropulsion systems are expected to operate at higher heat dwell conditions for longer time durations than those in current service conditions. Under high heat dwell environments, advanced Ni-base superalloys intended for engine disk applications may be susceptible to concurrent time-dependent damage modes such as oxidation, stress corrosion, and creep in addition to cycle-dependent fatigue crack initiation and growth, which often manifest synergistic interaction effects on crack growth rates. Current life-prediction methodologies, however, generally do not treat synergistic interactions of multiple damage modes on component life reliability. Thus, there is a need to develop a probabilistic time-dependent fracture mechanics analysis capability for treating multiple damage modes in advanced Ni-based alloys for operations with long duration at high temperatures where time-dependent degradation mechanisms such as creep, oxidation, corrosion, and stress rupture may compete with time-independent fatigue crack growth as the component life-limiting mechanism [1,2]. On the other hand, advanced processing techniques and heat-treatment procedures have also been developed to create tailored microstructures in gas turbine disks. It is now possible to fabricate powder-metallurgy turboengine disks with controlled grain size and gamma prime sizes in the bore, rim, and transition zone of advanced Ni-base superalloys such as LSHR [3–5]. These advances in processing and heat-treatment techniques provide a new avenue for designing local microstructures with location-specific properties to combat and mitigate cycle-dependent and time-dependent crack growth mechanisms that are operative at high-dwell environments through an integrated computational design, processing, life-prediction, and risk assessment route.

This article focuses on the development of a fracture mechanics life-prediction methodology that can be utilized in two ways: (1) to treat multiple damage mechanisms pertinent for high-heat dwell environments in turboengine systems, and (2) to serve as a life-prediction and risk assessment tool in an integrated computational design and manufacturing platform [1,2]. To achieve this ultimate objective, a generic fracture mechanics approach has been implemented in a probabilistic life-prediction code, DARWIN [6], to treat the interaction of cycle-based and time-based crack growth resulting from various fatigue and fracture mechanisms, including those involving environmental degradation mechanisms such as oxidation, corrosion, stress rupture and creep. In this approach, cycle-dependent fatigue crack growth and time-dependent crack growth are treated as two independent processes.
whose crack growth increment, \(da \), over a mission can be summed according to the expression given by \([7–9]\)

\[
(da)_{\text{mission}} = \left(\frac{da}{dN} \right)_{\text{cyclic}} dN + \left(\frac{da}{dt} \right) dt
\]

(1)

where the first term on the right-hand-side of Eq. (1) treats cycle-dependent crack growth while the second term treats time-dependent crack growth for an arbitrary loading history within a mission. For fatigue crack growth test data generated under a constant frequency with dwell (as in dwell fatigue tests), Eq. (1) can be expressed as \([7–9]\)

\[
\left(\frac{da}{dN} \right)_{\text{dwell}} = \left(\frac{da}{dN} \right)_{\text{cyclic}} + \left(\frac{t_d + 1}{T} \right) \left(\frac{da}{dt} \right)
\]

(2)

where \(t_d \) is the dwell time and \(f \) is the frequency of the dwell fatigue cycles. To obtain the crack growth life, Eq. (2) is integrated over the fatigue cycle. The fatigue crack growth rate, \(da/dN \), can be represented in terms of the Paris power-law \([10]\) or a microstructure-based version \([11]\), as given by

\[
\frac{da}{dN} = A\Delta K^n \quad \text{for } \Delta K > \Delta K_{th}
\]

(3)

where \(\Delta K \) is the stress intensity range, \(\Delta K_{th} \) is the large-crack crack growth threshold, and \(A \) and \(n \) are material constants. Cyclic crack growth generally follows a transgranular path, while time-dependent crack growth due to stress-assisted grain boundary oxidation typically follows an intergranular path \([12–16]\). The transition from transgranular fracture to intergranular fracture depends on the temperature, load frequency, and hold time. In general, time-dependent crack growth under \(K \)-controlled conditions can be expressed as \([9,17,18]\)

\[
\frac{da}{dt} = B_o \exp \left(-\frac{Q}{RT} \right) K^m \quad \text{with } m > 0 \text{ and } K > K_{th}
\]

(4)

where \(K_{th} \) is the static crack growth threshold and \(B_o \) is a material constant which can be determined empirically from experimental data or evaluated from micromechanical models that relate \(B_o \) to material parameters. Both types of time-dependent crack growth models have been developed and reported in earlier publications \([9,17]\). For oxidation-induced crack growth, \(da/dt \) is described by \([17]\)

\[
\frac{da}{dt} = \frac{s_o}{t_o} \left(\frac{\pi E}{2\sigma_f c_f} \right)^{m/2} \left(\frac{1}{E/\pi d_o} \right) \left(\frac{D_o}{D} \right)^{m/2}
\]

\[
\times \exp \left(-\frac{Q}{RT} \right) K^m \quad \text{with } m > 0 \text{ and } K > K_{th}
\]

(5)

where \(E \) is Young’s modulus, \(\sigma_f \) is the yield stress, \(s_o \) is the reference penetration distance, \(t_o \) is the reference time, \(d_o \) is the reference crack-tip element size, \(D_o \) is the reference grain size, \(D \) is the grain size, \(m \) is the crack growth exponent, \(Q \) is the activation energy, \(R \) is the universal gas constant, \(T \) is the absolute temperature, and \(\gamma \) is the grain size exponent. Eq. (5) can be expressed in the form of Eq. (4) with \(B_o \) serving as a material constant that incorporates all material-related parameters. For the microstructure-based model, the material constant \(B_o \) is given by \([17]\)

\[
B_o = \frac{s_o}{t_o} \left(\frac{\pi E}{2\sigma_f c_f} \right)^{m/2} \left(\frac{1}{E/\pi d_o} \right) \left(\frac{D_o}{D} \right)^{m/2}
\]

(6)

which depends on the underlying microstructure but not on the temperature, stress or the stress intensity factor, \(K \). Details of the derivation for Eq. (5) including a validation of the grain size dependence can be found in a recent publication \([17]\).

The objective of this article is to report the development of a time-dependent crack growth for treating the effects of creep stress relaxation at the crack tip on time-dependent crack growth in Ni-based superalloys. The micromechanical crack growth model is then implemented into DARWIN \([3]\) and the methodology is utilized to perform life-prediction and risk assessment for a fictitious engine disk made from a powder metallurgy alloy ME3, also referred to as Rene 104, with a designed microstructure of controlled grain size and tertiary gamma size. The development of the time-dependent crack growth model for treating oxidation-induced crack growth under small-scale creep conditions is presented in Section 2. Applications of the time-dependent crack growth model to treat the cycle-dependent and time-dependent crack growth response of ME3 are described in Section 3. Using the enhanced risk analysis tool and material constants calibrated to powder-metallurgy (PM) disk alloy ME3, the effects of grain size and tertiary \(\gamma \)’ size on combined time-dependent and cycle-dependent crack growth in a fictitious ME3 disk is demonstrated in Section 4 for a generic rotor design and a realistic mission profile using the DARWIN. In Section 5, the results of this investigation are utilized to assess the effects of controlling grain size and tertiary \(\gamma \)’ size on the risk of disk fracture and to identify possible means for mitigating time-dependent crack growth in hot-section components. The computational results demonstrate that controlling location-specific microstructures and properties (e.g., instigating coarse grains and coarse tertiary \(\gamma \)’ in the rim) can be an effective means of enhancing disk life and reducing fracture risk.

2. Development of oxidation-induced crack growth model with crack-tip stress relaxation

The effects of crack-tip stress relaxation on the time-dependent crack growth rate, \(da/dt \), response equation was investigated by considering the fracture process of the crack-tip oxide layer with and without stress relaxation at the crack tip, as shown in Fig. 1. It is envisioned that stress relaxation at the crack tip can be described in term of the transient creep, \(C(t) \), field \([19]\) that is embedded inside the \(K \)-field. For transient creep, the near-tip stresses in the \(\gamma \)-direction normal to the crack is given by \([19]\).

\[
\sigma_{ij} = \frac{C(t)}{I_{A}} \left(\frac{1}{(m+1)} \right)
\]

(7)

where \(n \) is the creep exponent, \(C(t) \) is the time-dependent energy integral, \(I_{A} \) is a normalization parameter, \(A \) is the power-law creep coefficient, and \(r \) is distance ahead of the crack tip. The corresponding stresses in the \(K \)-field are given by \([20]\)

\[
\sigma_{ij} = \frac{K}{\sqrt{2\pi r}}
\]

(8)

Fig. 1. Schematics of the oxide fracture process in the \(C \)-field compared to oxide fracture in the \(K \)-field. Stress relaxation at the crack tip reduces the \(da/dt \) response because the relaxed stress field is less likely to cause oxide fracture at the crack tip by decreasing the region where the critical stress for oxide fracture can be attained.
which are relaxed by transient creep near the crack tip. Instead of focusing on the critical plastic or creep strain within the crack tip element, it is more instructive and convenient to consider the fracture stress of the oxide layer formed ahead of the crack tip. For fracture of the oxide layer at a critical stress of \(\sigma_{ox} \), stress relaxation at the crack tip would delay onset of crack growth and reduce the amount of crack extension compared to those of the K-field without stress relaxation, as shown in Fig. 1.

For a time increment of \(\Delta t \), the crack increment where the oxide fracture stress is met in the C-field is \(r_c \) while the corresponding plastic zone size in the K-field is \(r_K \). From Fig. 1, it is apparent that \(r_c \) is smaller than \(r_K \) for small-scale creep conditions. For a time increment of \(\Delta t \), the crack advance in a creep-relaxed stress field is \(r_K \). As a result, the time-dependent crack growth rate, \(\frac{d a}{d t} \), corresponding to the relaxed crack-tip stress field is lower than that of the K-field without stress–relaxation. From Eq. (7), the creep zone that satisfies a critical oxide fracture stress is given by

\[
\frac{r_c}{r_K} = \frac{C(t)}{I_0 A \sigma_{oxE}} \quad (9)
\]

and

\[
\frac{r_c}{r_K} = \frac{K^2}{2 \pi \sigma_{ox}^2} \quad (10)
\]

for the damage zone in the K-field. Dividing Eq. (9) by Eq. (10) leads one to

\[
\frac{r_c}{r_K} = \frac{2 \pi (1 - \nu^2)}{(n + 1) I_0 A \sigma_{oxE}} \left(\frac{\sigma_{ox}}{E} \right) \quad (11)
\]

after invoking [19]

\[
C(t) = \left(\frac{1 - \nu^2}{n + 1} \right) K^2 \quad (12)
\]

for small-scale creep conditions, where \(n \) is the power-law creep exponent, \(\nu \) is Poisson’s ratio, \(E \) is Young’s modulus and \(t \) is time of creep. Stress relaxation in Ni-base superalloys such as Rene 104 (ME3) and the NASA developed LSHR alloy have been shown to depend on the tertiary gamma prime (\(\gamma’ \)) size [21], as shown in Fig. 2, which in turn affects the time-dependent crack growth life. To describe the near-tip stress relaxation, the creep response within the crack-tip creep zone is considered to be governed by a power-law given by [22]

\[
\dot{\epsilon}_c = A \sigma^q \quad (13)
\]

with

\[
A = A_{b0} \left(\frac{b}{\lambda} \right)^q \quad (14)
\]

where \(A_{b0} \) and \(q \) are empirical constants describing the power-law creep response as a function of tertiary \(\gamma’ \) size, \(b \) is the magnitude of the Burgers vector for slip shearing the \(\gamma’ \), and \(\lambda \) is the tertiary \(\gamma’ \) size. By matching the C-field and the K-field at the critical stress level for oxide fracture, the crack growth rate, \(\frac{d a}{d t} \), for the stress–relaxed condition can be expressed in the terms of the crack growth rate, \(\frac{d a}{d t} \), for the unrelaxed condition. The corresponding relation is given by

\[
\frac{\frac{d a}{d t}}{\frac{d a}{d t}} = \frac{r_c}{r_K} \quad (15)
\]

which may be combined with Eqs. 11–14 by incorporating the tertiary \(\gamma’ \) size explicitly through the power-law creep to obtain an explicit relation between \(\frac{d a}{d t} \), \(\frac{d a}{d t} \), and \(\frac{d a}{d t} \), leading to

\[
\frac{d a}{d t} = \frac{A_{b0} \left(\frac{r_c}{r_K} \right)^p}{C_{n0} \left(n + 1 \right) I_0 \sigma_{oxE}} \left(\frac{b}{\lambda} \right)^q \left(\frac{K}{E} \right) \quad (16)
\]

where \(\sigma_{ox} \) is the creep coefficient, and \(I_0 \) is the normalization parameter in the C-field, which is identical to that in the HRR field [23,24]. The parameter \(\sigma_{ox} \) is the creep strain accumulated during stress relaxation, and \(\sigma_{ox} \) is the fracture strain of the oxide layer, and \(p = 1/q \). The (\(\frac{d a}{d t} \))-field term in the right-hand-side of Eq. (16) is given in Eqs. (5) and (6). Combining Eqs. (5) and (6) with Eq. (16) leads one to

\[
\frac{d a}{d t} = B_0 \exp \left(\frac{Q}{RT} \right) K^m \quad (17)
\]

and

\[
B_0 = \frac{\sigma_{ox}^{1 + \frac{1}{q}}}{\left(n + 1 \right) I_0} \left[\frac{\sigma_{oxE}}{\sigma_{ec}} \right] \left[\frac{b}{\lambda} \right]^{p \left(\frac{1}{m \sigma_{ec}} \right)} \left[\frac{\pi E}{2 \sigma_{ec}^2} \right]^{m/2} \left(\frac{1}{E \sqrt{\pi d_c}} \right)^m \left(\frac{D_o}{D} \right)^{m/2} \quad (18)
\]

Thus, the TDCG equation for oxidation-induced crack growth with stress relaxation at the crack tip is still governed by a power-law of \(K \), but the \(B_0 \) coefficient, which is now denoted as \(B_0^c \), is reduced as the result of stress relaxation and small-scale creep in the near-tip C-field. Furthermore, \(B_0^c \) is a function of two scaling parameters, the grain size and the tertiary \(\gamma’ \) size. In particular, \(B_0^c \) and \(\frac{d a}{d t} \) both decrease with increasing grain size and tertiary \(\gamma’ \) size. For a material with a relatively constant average grain size, Eq. (18) can be recast into a scaling law expressed in terms of the tertiary gamma prime size alone, leading to

\[
\frac{d a}{d t} = \left(\frac{r_c}{r_K} \right)^p \frac{d a}{d t} K^m \quad (19)
\]

with \(\dot{\sigma}_{ox}^c \gg \dot{\sigma}_c \) and

\[
\dot{\sigma}_{ox} = \frac{\sigma_{ox}^{1 + \frac{1}{q}}}{\left(n + 1 \right) I_0} \left[\frac{\sigma_{oxE}}{\sigma_{ec}} \right]^{1/p} b \quad (20)
\]

For illustration purposes, the \(n \) value of power-law creep is \(n = 4 \), then \(I_0 = 5 \), and \(\dot{\sigma}_{ox} = 1 \). Substituting these values into Eq. (20) leads one to

\[
\dot{\sigma}_{ox} = \frac{b \left[\sigma_{ec} \right]^{1/p}}{5} \quad (21)
\]

which indicates that \(\dot{\sigma}_{ox} \) depends mostly on the ratio of the critical creep strain to the oxide strain at fracture for a given creep exponent \(n \). Scaling laws for \(\frac{d a}{d N} \) and \(d a/d t \) have been developed for grain size, while a scaling law of \(d a/d t \) in terms of tertiary \(\gamma’ \) size.
is not necessary since the tertiary γ′ size has been found to exert no influence on the da/dN response [21].

3. Model applications to ME3 disk alloy

The microstructure-based TDCG model has been applied to predict the dwell fatigue crack growth behavior of ME3, which is an advanced powder metallurgy (PM) Ni-based alloy developed in a NASA program by GE and Pratt and Whitney [25]; ME3 is now referred to as Rene 104. This alloy was chosen for this modeling effort because of the existence of a relatively large database of microstructural data [26] and mechanical properties [25] in the public domain in the form of technical reports [25–27] and paper [28]. The ME3 alloys were typically prepared by powder metallurgy (PM) methods and subsequently forged into pancakes. The forgings were then given a series of heat-treatments at subsolvus or supersolvus temperatures to produce a variety of fine-grained microstructures containing primary, secondary, and tertiary gamma prime (γ′) precipitates of various sizes on the order of 1 μm or less. Fig. 3 presents a plot of tertiary γ′ size versus grain size for ME3 based on published data in the literature [26–28]. The ME3 materials tested by Gabb et al. [26] and Evans [27] were of similar grain size and tertiary γ′ size; both were NASA-processed materials [26]. The ME3 materials studied by Dahal et al. [28], which were from an AFRL MAI program, exhibited a larger grain size and tertiary γ′ size compared to those of Gabb et al. [26] and Evans [27].

Cycle-dependent crack growth is typically described in terms of the Paris power-law equation as given by Eq. (4). For ME3, material constants in the Paris power-law equation were obtained by applying the response at 538°C to the scaling equation, Eq. (21), to the da/dt data at a stress ratio, Rc, of 0.5 for ME3 reported by Gabb et al. [25]. The stress ratio is denoted as Rc to differentiate it from the universal gas constant, R = 8.314 kJ/mol K, m = 5.388, and Kθ = 19.2 MPa/√m. Fig. 4(b) shows the fit of Eq. (2) to the da/dt data at Rθ = 0 for ME3 reported by Gabb et al. [25]. The Arrhenius-law was also used to compute the da/dt response at 538°C.

The effect of tertiary γ′ size on the da/dt response was examined by applying the γ′ scaling equation, Eq. (21), to the da/dt data reported by Gabb et al. [25] and Dahal et al. [28] for 704°C. The tertiary γ′ size for the ME3 material studied by Dahal et al. [25,26] was ≈ 20–33 nm, while those of Dahal et al. [28] was 42–60 nm.

The two sets of da/dt data were utilized to determine the p value based on a reference γ′ size, λp, of 1 nm and a p value of 5 was obtained, as shown in Fig. 5.

Eq. (2) was utilized to compute the da/dt response of ME3 as a function of frequency for AK = 16.5 MPa(1/2) at Rθ = 0.5. For these computations, da/dt = f(1/f + λp), where f is the frequency and λp is the hold time at dwell. Fig. 6 shows the fatigue crack growth rates as a function of frequency for various temperatures. At high temperatures, da/dt increases with decreasing frequencies. The frequency effect diminishes with decreasing temperatures. In particular, da/dt is entirely controlled by cycle-dependent crack growth and is independent of frequency at temperatures below 204°C, as shown in Fig. 6(a) for the NASA ME3 materials with a grain size of 27.9 μm (±3.72 μm) and a tertiary γ′ size of 28.6 nm (±4.3 nm).

![Fig. 3. A summary plot of tertiary γ′ size versus grain size in ME3 for subsolvus and supersolvus heat treatments (HT). Data are from Gabb et al. [26], Evans [27], and Dahal et al. [28].](image-url)
The agreement between model prediction and experimental is excellent for ΔK levels of 30 and 40 MPa(m)$^{1/2}$. In contrast, the model over-predicted the da/dN response at low frequency for $\Delta K = 50$ MPa(m)$^{1/2}$.

The influence of frequency and hold time during dwell fatigue on da/dN response can be quantified in terms of a dwell fatigue ratio, DFR, defined on the basis of Eq. (2). In particular, the dwell fatigue ratio can be defined as the ratio of da/dN response during dwell fatigue (DF) to the da/dN response under pure fatigue (F). Thus,

$$\text{DFR} = \frac{(da/dN)_{DF}}{(da/dN)_F} = \left[1 + \frac{t_d}{f} \right] \frac{da/dt}{(da/dN)_F}$$

which can be elucidated further by combining with Eqs. (3) and (4) to give

$$\text{DFR} = \left[1 + \frac{t_d}{f} \right] \frac{B_0 \exp(-Q/RT)}{A(1-R_c)^m} K^{m-n}$$

which indicates DFR depends on the $(1/f + t_d)$ term, the ratio of B_0/A, n, and m at a given temperature T and stress ratio R_c. Fig. 7 shows a comparison of the computed and measured DFR for ME3 materials at 704 °C and an R_c ratio of 0.1. The compiled dataset in Fig. 7 indicates that the DFR increases with decreasing effective frequency and is essentially independent of the ΔK level. The material parameters that contribute to the B_0/A ratio appear to be a constant and is independent of the ΔK level because n and m are almost equal. The finding suggests that the large increase in the da/dN rates observed during dwell fatigue at a given temperature may originate from the exponential term, $\exp(-Q/RT)$, in the da/dt response equation (Eqs. (4) and (5), or Eq. (17)) and a relatively large hold time at the peak load during dwell.

4. Life-prediction and risk assessment of a turboengine disk

In this section, life-prediction and risk assessment of a fictitious ME3 disk subjected to a realistic mission profile is presented. The objectives of this analysis are (1): to check the microstructural scaling module implemented in DARWIN, (2) to evaluate the benefits of controlling grain size and tertiary γ' size on delaying time-dependent crack growth and improving crack growth life, and (3) to assess the risk of disk failure due to grain size and tertiary γ' size variations. The demonstration problem consists of the following major components:

The same approach, Eq. (2), was utilized to predict the dwell fatigue da/dN response of ME3 from the MAI program (44 μm grain size and 42–60 nm tertiary γ' size) by applying the γ' size scaling law, Eq. (19), to obtain the da/dt response. Tertiary γ' scaling was applied to the da/dt response only because the fatigue crack growth rate, da/dN, was reported to be independent of tertiary γ' size [21]. Fig. 6(b) presents a comparison of the predicted and measured da/dN response as a function of frequency for ME3 at three ΔK levels at $R_c = 0.1$ for 704 °C. The comparison indicates that...
• The material properties of an advanced powder-metallurgy (PM) disk alloy defining the constants used in the time-dependent crack growth equations implemented in DARWIN.

• Generic, non-proprietary axisymmetric rotor geometry definition of realistic complexity and size.

• Stress and temperature load step definitions for a selected gas turbine rotor disk geometry with associated mission profile and load step durations.

The PM disk alloy ME3 was selected for the DARWIN demonstration because of a set of database and database properties as well as the corresponding microstructural information is available in the open literature. Both the set of mechanical and microstructural properties and the corresponding life-prediction results can be shared with other OEMs. As indicated in Section 3, the mechanical and microstructural properties of the ME3 alloys utilized in this demonstration were from the a NASA program [25] and from an AFRL MAI program [28]. Both materials received a series of heat-treatments at supersolvus and/or subsolvus temperatures to produce fine-grain microstructures with a range of precipitate sizes for primary, secondary, and tertiary γ precipitates.

The finite-element (FE) model of a fictitious rotor design selected for this demonstration problem is shown in Fig. 8. The disk was divided into three regions: (1) Region A with a uniform grain size \(a_i \), (2) a transition region with mixed grains of sizes \(a_i \) and \(b_i \), and (3) Region B with a uniform grain size \(b_i \). In the transition region, the grain size varies linearly from \(a_i \) at the Region A boundary to \(b_i \) at the Region B boundary. Six cases of various grain sizes and tertiary γ sizes were considered in the benchmark calculations. As summarized in Table 2, uniform grain size and tertiary γ size through the disk was considered in Case 1. Fig. 9 shows the uniform grain size and tertiary γ size within the disk as well as the location of the anomaly (crack). In Cases 2, 4 and 6, the grain size in Region A, the transition zone and Region B were varied while holding the tertiary γ size constant. In Cases 3 and 5, the tertiary γ size was varied in Region A, the transition zone, and Region B while the grain size was held constant.

![Fig. 8](image)

Fig. 8. The FEM mesh of a fictitious ME3 disk comprised of a Region A with a uniform grain size, \(a_i \), a transition region of mixed grains sizes \(a_i \) and \(b_i \), and a Region B of grain size \(b_i \). The tertiary γ sizes are also varied in individual regions. The color contours show regions of high stresses (red) and low stresses (blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

![Fig. 9](image)

Fig. 9. ME3 disk with uniform grain size (28 \(\mu \)m) and uniform tertiary γ size (28 nm). The location of the anomaly is indicated by the open circle and the crack path is denoted by the arrow.

Table 2

A summary of grain size and tertiary γ size utilized in the life-prediction and reliability analysis of a ME3 disk with controlled (assumed) microstructure sizes.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Region A</th>
<th>Transition region</th>
<th>Region B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grain size, nm</td>
<td>Tertiary γ size, nm</td>
<td>Grain size, nm</td>
</tr>
<tr>
<td>Case 1</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Case 2</td>
<td>28</td>
<td>28</td>
<td>5–28</td>
</tr>
<tr>
<td>Case 3</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Case 4</td>
<td>5</td>
<td>28</td>
<td>5–28</td>
</tr>
<tr>
<td>Case 5</td>
<td>28</td>
<td>28.8</td>
<td>28</td>
</tr>
<tr>
<td>Case 6</td>
<td>5</td>
<td>28</td>
<td>5–56</td>
</tr>
</tbody>
</table>

Fig. 10(a) and (b) present the variations of grain size and tertiary γ size in Cases 2 and 3, respectively. Similarly, Fig. 11(a) and (b) shows the variations of grain size and tertiary γ size in Cases 4 and 5, respectively. At the current stage of development, either the grain size or the tertiary γ size can be varied in DARWIN, but not at the same time.

A mission profile consisting of stress and temperature as a function of time and load step durations was utilized for these calculations. This mission profile, which cannot be presented here because of proprietary reasons, contained pertinent temperature, stress, and time histories that were necessary to test the time-dependent crack growth model presented in this work. For the benchmark calculations presented in this paper, the temperature histories were applied uniformly to the disk. Under the imposed load and thermal histories, Region B experienced the highest stresses and temperatures. A surface anomaly in the form of a half-penny-shaped crack was assumed to be present near a bore, and the surface anomaly distribution is shown in Fig. 12. The median of the initial crack depth was 0.2 mm. Probabilistic crack growth analyses were performed with concurrent time-dependent crack growth and cycle-dependent fatigue crack growth. Cycle counting was performed using a rain-flow method.

Some of the results of the demonstration problem are highlighted in Figs. 13 and 14. Fig. 13 plots the value of \(K_{\text{max}} \) as a...
function of flight cycles, while Fig. 14 presents the corresponding cracked area as a function of flight cycles. In both figures, the actual values of K_{max} and cracked area were intentionally left out in order to protect sensitive data. Fig. 14 shows that the calculated fatigue life for ME3 disk with uniform grain size (28 μm) and tertiary γ' (28 nm) as a reference. The fatigue lives are reduced when fine grains (5 μm, Case 2) or fine tertiary γ' (5 nm) are placed in Region B. Similarly, the fatigue lives are reduced when fine grains (5 μm) are placed in Region A. In contrast, the fatigue lives are increased when coarse tertiary γ' precipitates and coarse grains (Case 5 and Case 6) are placed in Region B. These results can be understood on the basis that both cycle-dependent and time-dependent crack growth rates increase with decreasing grain size, while cycle-dependent crack growth rate is independent of tertiary γ' size and time-dependent crack growth rate decreases with increasing tertiary γ' size. These results are also complicated by the fact that the crack path is located within the transition zone, which contains a mixture of coarse and fine grains and tertiary γ' precipitates. Fig. 15 presents results of the conditional probability of fracture due to fatigue crack growth with concurrent time-dependent crack growth. As expected, the fatigue life was reduced and the risk of fracture was increased by the presence of fine grains and fine γ' precipitates in the rim region while the reverse is true when larger tertiary γ' sizes and grain sizes are placed in Region B. Thus, the time-dependent crack growth framework implemented in DARWIN appeared to work properly and successfully in this demonstration problem to illustrate the beneficial effects of controlling grain size and tertiary γ' size on improving fatigue life and reducing risk of fracture.
5. Discussion

One of the main assumptions utilized in the life-prediction analysis is that cycle-dependent and time-dependent crack growth can be treated via the summation law as described in Eq. (1). One of the advantages of the summation law, which has been used successfully by other investigators [7,8], is that Eq. (1) can be applied to complex mission profiles with arbitrary stress–time and temperature–time histories simply by performing cycle-by-cycle integration of the crack growth equations according to the imposed loading and thermal histories. At a given stress and temperature, da/dN and da/dt are computed via Eqs. (3) and (4), respectively. The total crack growth increment is then summed in the manner as described in Eq. (1). Thus, there is no need to keep track of loading and unloading steps since cycle-dependent and time-dependent crack growth are taken to occur concurrently at all times with the corresponding growth kinetics governed by Eqs. (3) and (4). In addition, the dependence of da/dt on frequency is not assumed but is predicted as a natural consequence of the times spent at a given stress at an elevated temperature where the time-dependent crack growth process is operative.

It is well-known that fatigue crack growth in Ni-based superalloys usually occurs along a transgranular path, while time-dependent crack growth proceeds along the grain boundaries. The area fractions of transgranular and intergranular facets on the fracture surfaces represent the relative extents of the cycle-dependent and time-dependent fracture processes. The frequency at which cycle-dependent crack growth transitions to time-dependent crack growth can be predicted from Eq. (1) but it requires one to specify a particular percentage of intergranular facets on the fracture surfaces. Such computations have not been performed since they are not the focus of this work. In general, the transition frequency is expected to increase with increasing temperatures as less time is required to cover a given percentage of intergranular fracture area by time-dependent crack growth as the temperature increases.

Another important assumption in the disk analysis is that the stresses in the disk are nominally elastic. Any plastic flow, creep, and oxidation damages are constrained within the K-field so that the stress intensity factor (K) and its range (ΔK) are the pertinent parameters for characterizing the crack driving force. For the disk calculations considered, the mesh was sufficiently fine and the stresses are almost entirely elastic except at certain stress concentration sites. As a result, the mesh size was not an issue and mesh sensitivity was not investigated in this work but it was performed in a previous investigation [29]. The initial defect was taken to be a semi-circular crack with a crack depth of 0.2 mm. The crack was allowed to change shape as it extended in length and ultimately the 3D-crack transitioned to become a through-thickness crack. Experimental values of the yield strength of the ME3 alloy at five temperatures for the grain size of interest were provided as inputs to DARWIN. During the life-prediction computations, the yield stress value at a given temperature was obtained either directly

![Fig. 12. Surface anomaly distribution utilized in the DARWIN demonstration problem.](image1)

![Fig. 13. DARWIN results of maximum stress intensity, K_{max}, as a function of flight cycle for the demonstration problem of this ME3 disk.](image2)

![Fig. 14. DARWIN results of cracked area as a function of flight cycle for the ME3 rotor design used in the demonstration problem.](image3)

![Fig. 15. Computed conditional probability of fracture as a function of flight cycle for the ME3 rotor design used in the demonstration problem.](image4)
or by interpolation from the input data. Yield strength inter-
polation based on grain size was not performed since such an
option is not currently available in DARWIN but this capability
may be added in the future.

One of the important findings of this investigation is the devel-
optment of a microstructure-based time-dependent crack growth
model for treating the effects of creep-induced stress relaxation
at the crack tip on the crack propagation rate. The current approach
on K-controlled time-dependent crack growth is motivated by pre-
vious observations that creep-induced stress relaxation at the
crack tip led to retarded da/dt response [21] during dwell fatigue
or long-term hold under sustained loading [30]. For a loaded crack
in a creeping solid, the stresses ahead of the creep crack is known
to decrease with increasing time during the transient period until
steady state creep is attained. For a fracture process that obeys a
critical stress failure criterion (such as oxide fracture), the da/dt
response may be reduced during the transient period because the
near-tip stresses decrease with increasing creep times. As the
near-tip stresses approach constant during steady state, the da/dt
may increase again when creep cavitation and oxidation occur con-
currently along the grain boundaries. In this paper, the modeling
effort is focused on the da/dt response resulting from crack-tip ox-
idation under the transient creep period without considering the
onset of dynamic (oxygen) embrittlement or the development of
crack cavities along the grain boundaries. The competition
between dynamic embrittlement and oxide-induced fracture has
been analyzed recently [31]. The theoretical analysis revealed that
oxide formation prior to or subsequent to dynamic embrittlement
would lead to essentially the same da/dt response when the trans-
formation stress associated with the oxide formation are compre-
sive. In both cases, the compressive transformation stresses at the
crack tip must be overcome first and the subsequent da/dt is con-
trolled by fracture of oxides formed either ahead of the crack tip or
in the crack wake. The results of this investigation also dem-
onstrated that stress relaxation at the crack tip during small-scale
transient creep can significantly reduce the oxidation-induced
crack growth rate by two processes: (1) limiting the crack-tip dam-
age zone where oxide fracture can occur within the creep-relaxed
stress field, and (2) preventing the near-tip stresses from reaching
the critical stress for oxide fracture. Both large grain size and large
tertiary γ' size retard the da/dt due to oxidation but for different
reasons. A larger grain size improves da/dt resistance because dif-
fusion of oxygen along grain boundaries decreases with increasing
grain size. In comparison, da/dt resistance in ME3 is enhanced by a
larger tertiary γ' size because of increasing crack-tip stress relax-
ation with increasing tertiary γ' sizes, which makes fracture of the
oxides at the crack tip more difficult. In addition, creep-
induced stress relaxation is confined to the crack tip under small-scale creep conditions such that the resulting da/dt response is entirely controlled and expressed in terms of the stress intensity
factor (K) as the crack driving force. Under these circumstances, the
da/dt response equation can be expressed in terms of K with the
crack growth coefficient, Bn, that is a function of grain size and ter-
tary γ' size; this characteristic property can be utilized to develop
a set of scaling laws based on the grain size and tertiary γ' size. It is
also important to note that the effects of grain size and tertiary γ'
size on cycle-dependent crack growth (da/dN) and time-dependent
crack growth (da/dt) response can be different. For ME3, grain size
scaling is applicable to both da/dN and da/dt, while tertiary γ' size
scaling is applicable to da/dt only as the da/dN response is indepen-
dent of the γ' tertiary size.

Evaluation of the dwell fatigue data revealed that da/dN increases with decreasing frequencies as the result of greater con-
tributions from time-dependent crack growth due to grain bound-
ary oxidation. Fig. 6(a) shows that the current model over-predicts
the da/dN response of ME3 at 704 °C for Rm = 0.5. The over-
prediction is believed to be caused by the fact that only a small
number of test data are available at several temperatures to get
an accurate determination of the activation energy term, Q, in Eq.
(4). It should also be noted that the da/dN response of ME3 at
704 °C shows considerably scatter but the scatter is not presented
in Fig. 6(a). Another possible reason for the over-prediction is that
the creep-induced stress relaxation at the crack tip may be larger
than expected due to variations in the tertiary γ’ size or grain size.
A more extensive evaluation of the proposed model against exper-
imental data will require additional dwell fatigue data over a wider
frequency and temperature than those shown in Fig. 6(a). The
over-prediction of the model for ME3 at K = 50 MPa(m)1/2 and
Rm = 0.1 shown in Fig. 6(b) could also be attributed to increased
stress relaxation due to coarsening of the tertiary γ’ size and/or
grain size as the time of exposure at elevated temperature (i.e.,
704 °C) increases. Currently, the model does not account for the
possible growth of the grain size and γ’ size during high tempera-
ture exposure. Only average values of the grain size and tertiary γ’
size are used to compute the da/dt response at a given tempera-
ture. Despite these simplifications, the predicted da/dt response for
the dwell fatigue ratio is reasonably good even though addi-
tional improvement may still be needed at high K levels. As shown
in Fig. 7, the dwell fatigue ratio (DFR), which is defined as the ratio
of (da/dN)max to (da/dN)min, increases with decreasing frequency and
with increasing hold times in a dwell fatigue cycle. According to
Eq. (23), DFR depends strongly on temperature and, to a lesser
extent, on the material parameters that contribute to Bn and A.
On the other hand, DFR is essentially independent of ΔK, which
can be explained on the basis of Eq. (23) by virtue of similar values
of the crack growth exponents for da/dN and da/dt. In Fig. 7, the
theoretical model over-predicted the DFR values for ME3 at high
ΔK values (ΔK ≈ 50 MPa(m)1/2) because the n and m values, which
were deduced from experimental da/dN and da/dt data, were
slightly different.

Before discussing the effects of grain size and tertiary γ’ size on
the disk life, it is important to note that this work represented the
first effort to apply a microstructure-based time-dependent crack
growth model in a probabilistic life-prediction analysis of an
engine disk. In this analysis, the computed disk life is based on
crack growth alone without considering the crack initiation life
as an appropriate microstructure-based fatigue crack initiation
model is not currently available. Since the effects of grain size on
crack initiation life is opposite to those for crack growth life
[32,33], the conclusion reached in this paper is limited to the crack
growth life only and should not be applied to situations where
 Crack initiation life is significant. When dominated by crack initia-
tion, the disk life may be improved by a microstructure of a fine
grain size as a fine-grained microstructure is more resistant to fati-
gue crack initiation compared to a large-grained microstructure.
With the caveat of being a crack growth analysis, the DARWIN
life-prediction calculations show clearly that variations in grain size and tertiary γ’ size can have significant impacts on the disk life and the fracture risk. Compared to a microstructure of a uniform
grain size and tertiary γ’ size, coarse grains and coarse tertiary γ’
in Region B are beneficial as both improve the disk life and reduce
the fracture risk. The enhancement in the crack growth life is the
consequence of reduced time-dependent crack growth rates (da/dt)
in Region B and in the transition zone near Region B where
oxidation-induced crack growth occurs. The DARWIN simulations
demonstrated that the disk life can be improved by tailoring the
local microstructural features such as the grain size and the ter-
ary γ’ size. In particular, instigating coarse grain size and coarse
tertiary size in Region B appears to be an effective means for miti-
gating time-dependent crack growth due to oxidation. In addition,
the DARWIN simulations also indicate that fine grains and fine ter-
ary γ’ in Region B and in the transition zone would have

detrimental effects on disk life and increase the risk of disk fracture. Thus, it is extremely important to control grain size and tertiary \(c \) variations in order to prevent life debits due to the presence of the undesirable microstructural feature size at critical locations where the disk life can be impacted severely. Overall, the DARWIN simulations serve to demonstrate the potential benefits of improving disk life and reduced risk of disk fracture when location-specific microstructure and properties are taken into account when performing life-prediction and risk assessment analyses of gas turbine disks. In general, a fine grain size is beneficial for crack initiation performance of life-prediction and risk assessment analyses of gas turbines. Thus, it is extremely important to control grain size and tertiary size. Future work should, therefore, consider both crack initiation and crack growth, an effort which is currently underway.

6. Conclusions

The conclusions and achievements obtained in this investigation are as follows:

1. A microstructure-based time-dependent crack growth model has been developed for treating oxidation-induced crack growth with stress relaxation at the crack tip for small-scale creep conditions. Appropriate scaling laws for treating the effects of grain size and tertiary \(c \) size on \(da/dt \) have also been developed.

2. The time-dependent crack growth model has been tested and verified against experimental data of an advanced powder-metallurgy alloy ME3 for static crack growth and dwell fatigue conditions at elevated temperatures.

3. The time dependent crack growth life-prediction methodology has been integrated into the DARWIN code and illustrated by performing life-prediction and risk analyses on a fictitious disk made from an advanced powder-metallurgy disk alloy (ME3) to demonstrate the competition of multiple damage modes involving interactions of cycle-dependent crack growth and time-dependent crack growth for mission profiles that contain high heat dwell at elevated temperatures.

4. The beneficial effects of coarse grain size in the bore and in the rim of a turboengine disk have been simulated using DARWIN and the assumed grain structures in a ME3 disk.

5. The beneficial effect of coarse tertiary \(c \) size in mitigating time-dependent crack growth has been demonstrated by DARWIN simulation on a ME3 disk with the assumed microstructure.

Acknowledgements

This work was supported by NAVAIR under contract No. N68335-13-C-0101 and monitored by Mr. Raymond A. Pickering. The assistance by Ms. Lori Salas, SwRI, in the preparation of the manuscript is acknowledged.

References