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Abstract

Suppose you have multiple advisors, each trained in a di�erent specialty, whom you

consult about a decision. You must decide categorically { an up or down call, say (no

hedging allowed) { so you require the same of your advisors. Your group has faced sim-

ilar questions before, and you've recorded their advice and the subsequent outcome for

each case. If you can trust that no advisor is working against you, then you only need

examine a �nite set of advisor weight vectors to discover those which would have been

optimal, historically. This new, robust way to integrate multiple trained classi�ers, Ad-

visor Perceptrons (Elder 1992), is demonstrated on six datasets, using �ve heterogeneous

classi�ers { which we believe combine more fruitfully than homogeneous ones. It is then

compared to some common alternative combination techniques and shown to improve

generalization accuracy.

Keywords: classi�er combination, ensemble methods, bagging, boosting, bumping,

stacked generalization, decision tree, neural network, projection pursuit regression, learn-

ing vector quantization, logistic regression
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1 Introduction

The recent decade of work on modeling algorithms has witnessed great creativity and ferment

from several �elds as researchers have extended and successfully applied powerful nonlinear

techniques { from decision trees and neural networks, to adaptive splines and polynomial

networks { to a number of forecasting, classi�cation, and diagnosis challenges (Ripley 1993;

Cheng & Titterington 1994; Cherkassky, Friedman, & Wechsler 1995; Elder & Pregibon 1996;

Ripley 1996).

Still, the number of distinct techniques one can employ to inductively create a classi�-

cation model is actually much smaller than it at �rst appears; many methods are actually

reinventions of, or slight deviations from, others. For instance, case-based reasoning is a form

of nearest-neighbor modeling, and polynomial neural networks are a type of kernel technique.

(Reducing the apparent diversity however, would require the hardship of communicating out-

side one's specialty discipline!)

Given a plethora of algorithms, a natural question to ask is Which works best? A good

study toward that end is described in (Michie, Spiegelhalter, & Taylor 1994; reviewed in

Elder 1996b). Recently however, several researchers have found that an ensemble of models

can be more accurate (on new data) than the best single model (e.g., Jacobs et al. 1991;

Wolpert 1992; Perrone & Cooper 1993; Hashem, Schmeiser, & Yih 1994).

This process of bundling models together can be thought of as a approximation of the

theoretical Bayesian approach of �tting all possible models and combining them by their

prior weights. Bundling requires two stages: 1) generating su�ciently diverse models from

the training data, and 2) combining their outputs.

Most researchers have generated multiple classi�ers from the same family ( Xu & Jordan

1993; Romero & Obradovic 1995; Tumer & Ghosh 1995; Skalak 1997), though some use het-

erogeneous classi�ers (Elder 1996a). When generating homogeneous classi�ers, diversity can

come from training the models with di�erent guiding parameters (e.g., varied initial neural
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network weights (Battiti & Colla 1994; Hansen & Salamon 1990), di�erent model structure,

di�erent stopping and pruning criteria), iterative changes to the case weights (boosting, Fre-

und & Schapire 1996), and/or bootstrapping the training data, either with noise (Raviv &

Intrator 1995) or without noise (bagging, Breiman 1994). We believe that the greatest use-

ful diversity will come from employing diverse, but individually accurate, methods from the

neural network, machine learning, and statistics communities.

For combination, the most common approaches are averaging, weighted averaging, and

voting. (And, one recent method of bundling, bumping (Tibshirani and Knight 1995) doesn't

combine at all, ignoring all but the best of the bootstrapped alternative models.)

We here formally introduce, and demonstrate the utility of, a new method of combination:

Advisor Perceptrons (APs). They are a type of weighted voting model where the possible

weight sets can be exhaustively enumerated in a straightforward manner. Invented by Elder

(1992), they were �rst applied to combining heterogeneous techniques by Lee (1996). This

paper strengthens and extends those preliminary results.

2 Advisor Perceptrons

Formalizing the analogy of the abstract, suppose we have the outputs of c classi�ers y1; � � � ; yc

and want to combine them to form an integrated output z. For APs, we �rst discretize

y1; � � � ; yc into binary �1 and input them into the \unbiased" perceptron (weighted sum with

a threshold)

z =

8><
>:

�1 if
Pc

j=1wjyj < 0

+1 if
Pc

j=1wjyj > 0,

where the weights w = fw1; � � � ; wcg are such that
Pc

j=1wjyj 6= 0. Consistent with assuming

no classi�er is misleading, we further constrain the weights w to be non-negative; i.e., one

should, at worst, ignore a classi�er's advice.

Given discrete inputs and outputs, in�nitely many weight vectors form identical functions.
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For example, in a binary AP with three inputs, the weight set f3; 5; 7g behaves like f1; 1; 1g.

As the weight space can be partitioned into regions, the possible APs are �nite in number,

and we can represent each region by a single point (say, that closest to the origin). The APs

can be enumerated, and examined on the (training) data, to �nd the best for combination.

To enumerate the APs for c dimensions, one can solve a linear program, minimizing the

sum of weights
Pc

j=1wj subject to the above constraints. For simplicity, one may also add

the restriction that the weights be nonincreasing. This generates AP templates which may

be permuted to form the possible combinations. New templates use all inputs; i.e., have

no zero weights, and the others may be generated from lower-dimensional new template

permutations.

The sets of new templates for c = 1 to 5 are f1g; fg, f111g, f2111g, and f11111; 22111;

31111; 32211g. Permute, (and padded), they enumerate the weight space. For example, the

four weight sets of a three-input perceptron have the two templates f100g and f111g which

generate the four APs w�

1 = f1; 0; 0g, w�

2 = f0; 1; 0g, w�

3 = f0; 0; 1g, and w�

4 = f1; 1; 1g. The

perceptron with w�

4 corresponds to majority voting, and the other three ignore the advice of

two inputs and follow the third.

Interestingly, Muraga et al. (Muroga, Tsuboi, & Baugh 1970), working on an early chip

layout problem which happened to be similar to APs, showed that for weight sets involving 7

or fewer inputs, all APs are unique and employ only integer values. However, some functions

of 8 inputs have fractional optimum weights; for example: (14.5, 12.5, 9.5, 7.5, 6, 4, 4, 1.5, 1.5)

{ and others have multiple solutions. Further new classes of weight sets start at 9 inputs, they

con�rmed, providing what may be read as an example of the curse of dimensionality, where

low-dimensional behavior does not extrapolate cleanly to higher dimensions. Nevertheless,

the APs remain �nite in number and, although they grow rapidly with dimension, c, as

shown in Table 1, they seem to be a very reasonable subset to explore of the 22
c

binary logic

functions it is possible to consider.
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Table 1: Number of distinct perceptrons

c Perceptrons New \templates"

1 1 1

2 2 0

3 4 1

4 12 1

5 81 4

6 1,684 14

7 123,565 114

8 33,207,256 2,335

9 34,448,225,389 172,958

Here, we integrate 5 di�erent classi�ers, leading to only 81 Advisor Perceptrons, so clearly

exhaustive enumeration is not only more reliable than searching over the space of voting

weights, but faster.

3 Classi�cation Algorithms

We now brie
y outline the 5 algorithms employed, which were implemented in S-PLUS Ver-

sion 3.4 (Chambers & Hastie 1992; Venables & Ripley 1994). Logistic Regression, Decision

Trees, and Projection Pursuit Regression are standard S-PLUS functions. The Neural Net-

work and Learning Vector Quantization classi�ers come from Brian Ripley's nnet and classif

libraries from the \StatLib" archive.

Let xji represent the j-th attribute of pattern xi whose true class is yi = �1 or 1. Let

P (yi = 1jxi) denote the probability of yi = 1 given xi. Let P̂ (yi = 1jxi) denote the estimated

probability of yi = 1 given xi.
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Logistic Regression (LR) The model is

logit(P (yi = 1)) = �0 +
pX

j=1

�jxji;

where logit(z) = log z
1�z

, and �'s are the parameters to be estimated via maximum likelihood

(Myers 1990). If P̂ (yi = 1jxi) � :5, then pattern xi is classi�ed as \class +1", otherwise as

\class -1".

Decision Tree (Tree) Tree algorithms recursively partitions the feature space into locally

constant regions, usually hypercubes parallel to the feature axes. A fully grown tree was �rst

�tted to the training data, then pruned back to a subtree with a lesser number of terminal

nodes to avoid over�t. Overtraining and pruning, rather than stopping { as introduced in

CART (Breiman et al. 1984), seems to help avoid getting trapped in a type of local minima.

We modi�ed the S-plus algorithm to behave a bit more like CART by also using 10-fold

cross-validation (10-CV) performance on the training data to determine the cut point.

Projection Pursuit Regression (PPR) This statistical procedure proposed by Friedman

and Stuetzle (1981) scores low-dimensional projections of high-dimensional data by how well

a scatterplot smoother can estimate the output remaining after previous smoothes have been

removed. The model is of the form

logit(P (yi = 1)) = �0 +
kX

m=1

�m�m(
pX

j=1

�jmxji);

where three sets of parameters, projection directions �m's, the unknown smooth activation

functions �m's, and the projection \weights" �'s are estimated in a sequential manner, using

back�tting

Neural Network (NN) We used the supervised feedforward single-hidden-layer neural

network

P̂ (yi = 1jxi) = �0(w0 +
X
h

wh�h(w0h +
pX

j=1

wjhxji));

where �0 and �h's are some �xed monotonic di�erentiable functions. Such networks are very

general and have been shown by many authors to be theoretically capable of approximating
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any continuous function of the input variables given su�ciently large numbers of hidden

units h. Unlike Projection Pursuit Regression, NN training algorithms estimate the weights

w's simultaneously (although with a randomized gradient search procedure that is relatively

slow).

Learning Vector Quantization (LVQ) This method originated as a self-organizing map,

which has traditionally been labeled a neural network method, although it is rather di�erent

from the supervised feedforward multi-layer perceptron above. The basic idea is to replace

the example cases by a \representative" set of codebook vectors. To be used as a classi�er,

these points are assigned classes randomly; then, the LVQ algorithm adjusts their location

in a feedback manner to converge to a stable state. The classi�cation rule for a new case is

to use the class of the nearest codebook vector, so moving them implicitly adjusts the class

boundaries.

For LR, the datasets used in the experiments (described next) did not have large numbers

of uninformative variables, so all inputs were used. For the other four methods, decisions

were required as to the degrees of freedom (model complexity) to employ. 10-CV tests were

performed on the Trees, to decide where to stop, and on the Neural Networks, to suggest

the number of hidden units, h, and on the Projection Pursuit Regression models, to indicate

the best number of smoothes, k. As their complexity was considered roughly equivalent, and

the CV tests are only indicative, not fool-proof, the larger of the two numbers, h and k, was

used for both of those values in the experiments. That number was also used to determine

the number of LVQ codebook vectors, as cross-validation is cumbersome to use with that

method by itself.

The output vectors of these 5 classi�ers serve as inputs to the AP for integration. Whereas

LVQ provides binary -1 or +1 output directly, the other four produce real-valued outputs

which must be discretized to binary values. At �rst, it seems a loss to reduce the precision of

the probability information in the estimates in this manner, but forcing the advisor methods
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to make a binary decision (vote) also seems to add robustness in many situations. In any

case, alternative methods of combination were tracked as well.

4 Data Sets

Four of the six data sets employed are from the UCI repository; the last two are generated

as described here. A brief overview:

Hypothyroid The full data set has many qualitative and quantitative input variables, and

several missing values. Here, we just considered the �ve quantitative variables denoted by

TSH, T3, TT4, T4U, and FTI, and removed cases with remaining missing values. This leaves

2000 cases, of which 1878 are class -1 (negative), and 122 are class 1 (positive).

Waveform This simulated data set consists of 5000 cases and 3 types of waves denoted 0, 1,

and 2, each having probability 1/3, as described by Breiman et al. (1984). A C subroutine

for generating the data is in the UCI repository. To make it binary, we grouped the 3343

waves in groups 0 and 1 to form the class -1, leaving the 1657 waves in group 2 to be class 1.

Credit This data is from a German bank tracking applicants for credit. Here, we use only the

7 numeric variables, and ignore the 13 qualitative variables. Of the total of 1000 cases, 700

of them are \good" customers (class 1) and 300 are \bad" customers (class -1).

Diabetes This data was gathered among the Pima Indians by the National Institute of

Diabetes and Digestive and Kidney Diseases. It consists of 768 cases and 8 input variables.

The input variables are medical measurements and pregnancy information on each patient.

For the response, 268 cases tested positive for diabetes (class 1) and 500 cases tested negative

(class -1).

Investment The data are generated from a rule base adapted from (Luger & Stubble�eld

1989), and shown in Table 2, which addresses some of the issues involved in investment

advising. The data-generating system consists of 5 input variables, shown in bold in Table 2,
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and a binary response variable invest-stocks: -1 represents advice to put o� investing in stocks

and 1 represents advice to invest in stocks. We generated 10000 cases with approximately

equal number in each class.

Table 2: Investment rule base

(1) if (saving-adequate and

income-adequate) then invest-stocks

(2) if dependent-saving-adequate then saving-adequate

(3) if assets-high then saving-adequate

(4) if dependent-income-adequate then income-adequate

(5) if debt-low then income-adequate

(6) if (saving � dependents�5000) then dependent-saving-adequate

(7) if (income � 2500 +

4000�dependents) then dependent-income-adequate

(8) if (assets � income � 10 ) then assets-high

(9) if (annual-debt < income � 0.3 ) then debt-low

Note, that although there is an exact correspondence between a rule-base such as this and

a Decision Tree model, the latter must be induced from the sample data. Here, the several

diagonal conditions make it di�cult for an axes-parallel tree to capture the structure as well

as might �rst be thought.

Normal

The last dataset is generated from two 3-dimensional Normal distributions, skewed with

respect to one another and overlapping. Their mean vectors are f0,0,0g and f1,1,1g, with

covariance matrices equal to Identity along the diagonal, with zero o�-diagonal correlations

for the �rst, and correlations of 0.9, 0.8, and -0.7 for the second. Half of the 100,000 cases
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used were from each distribution (class) in both training and evaluation. Using a Quadratic

Discriminant analysis (whose assumptions of structure exactly match the problem, but whose

parameters were estimated), we got 21.3% error on the training data and 21.5% on the

evaluation data.

5 Experiments

The �nite datasets were �rst split randomly, so that 2/3 was used for training, and the

remaining 1/3 for evaluation. Key user-de�ned model parameter settings, (the number of

terminal nodes in the pruned Tree, the number of projections in PPR, and the number of

hidden units in NN) were recorded using 10-fold cross validation on the training data set.

(There, 90% of the data is used for training a sub-model, which is tested on the remaining

10%; those results are accumulated after 10 runs so every case has its turn as an out-of-sample

case.) We tested values ranging from 1 to 12 and the winner is shown in the �rst rows of

Table 3. The largest of the NN and PPR parameter counts was used for three methods (NN,

PPR, LVQ), as described above.

The second phase was to �nd the optimal Advisor Perceptron (AP) from the out-of-

sample predictions on the training data using another round of cross-validation (CV). One

10-CV produces 10 sub-models for a method, which lead to one vector (the size of the original

dataset) of out-of-sample estimates. If this was not su�cient to lead to a single AP (some

may tie on performance) the CV process was repeated until the best AP stabilized.

In a third phase, the full training set was used to �t the �ve di�erent classi�ers, using

the same user-de�ned model parameter settings found in phase 1. Lastly, the evaluation set

was employed to test the whole system: individual trained classi�ers and the AP, as well

as alternatives: voting, averaging, and using the AP weights without voting). The resulting

misclassi�cation rates of the methods and the combining techniques are shown in Table 3.
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6 Discussion & Conclusion

The single best technique in these tests is the Neural Network, winning over its competitors

4 of 6 times. But each algorithm does the best of all, or nearly so, on at least one dataset.

However, it is hard to tell beforehand { whether from the problem description or the training

performance { which algorithm will be the leader.

Similarly, the various combining methods take turns as best. Still, AP beats simple

averaging (probably the most common combination approach) 5 of the 6 times, and the best

single method, NN, the same proportion.

To get a clearer picture of the relative merits of the individual methods and the combin-

ing techniques, for each data set, we scale the range of the observed misclassi�cation rates

(from just smaller than the lowest misclassi�cation rates to just larger than the highest mis-

classi�cation rates) to the unit interval (0,1). A good method or technique should has a

relative error rate close to 0, for all data sets. We plot the relative error rates versus the data

sets for all �ve individual methods, as well as averaging, voting, APs, using the AP weights

without voting. It is clear from the side-by-side plots in Figure 1 that APs achieve the best

overall performance, and using the AP weights without voting is in the second place. APs

are more stable in performance than any individual method, so would be more reliable to use

when the problem does not have an obvious solution structure. These preliminary results

suggest that Advisor Perceptrons should be a candidate combination technique to explore

when considering the very useful strategy of bundling models.
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Table 3: Misclassi�cation rates on evaluation and training data for the 6 data sets

Hypothyroid Waveform Credit Diabetes Investment Normal

On Evaluation Data

# nodes 9 19 5 5 41 4

# proj. 8 2 2 3 8 2

# hidden units 7 3 3 3 11 2

LR 6.0 14.4 30.6 21.5 22.9 22.4

Tree 3.3 18.2 33.0 24.2 6.3 24.2

PPR 5.2 11.7 36.0 23.0 6.5 24.7

NN 3.0 11.5 31.2 23.8 1.4 22.2

LVQ 7.2 14.0 30.6 22.3 19.3 22.5

Avg 3.1 11.9 30.6 23.0 3.0 22.5

Vote 4.5 12.0 30.0 22.3 2.6 21.9

AP avg 2.5 11.8 30.6 22.3 1.5 22.4

AP vote 2.7 11.3 30.9 22.3 1.7 22.0

AP 01110 11232 31111 11010 01121 11021

On Training Data

LR 5.0 14.0 28.8 22.7 24.4 25.6

Tree 1.8 12.8 27.7 20.3 4.8 23.0

PPR 4.5 10.2 23.4 19.5 5.6 21.1

NN 0.6 9.1 24.3 20.3 0.5 25.0

LVQ 7.0 13.1 28.5 23.4 18.0 26.2

Avg 2.6 10.6 28.3 23.4 2.0 26.2

Vote 3.0 9.5 27.1 20.3 1.7 24.2

AP avg 1.1 10.3 28.1 23.2 0.8 26.0

AP vote 1.3 9.3 28.0 20.3 0.7 24.2
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Figure 1: Model Performance on Six Data Sets: Individual Models and Bundles


