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This article is Part 9 (of 11) of a series by the author on the Top 10 Data Mining 
Mistakes, drawn from the Handbook of Statistical Analysis and Data Mining 
Applications. 
 
I’m tempted to start with a kind of query that experience teaches some of us not to 
answer, like ―Does this data make me look fat?‖ But that actually misleads about the 
point I’m trying to make. Data Scientists (and their models) should answer all queries as 
truthfully as the evidence allows, regardless of how happy or unhappy that makes the 
questioner. What I am arguing here is we shouldn’t answer when our opinion is 
unqualified; that is, when there is not enough evidence. I learned this the hard way! 
Early in my career, I demonstrated a model built to estimate rocket thrust that used 
engine temperature, T, as one of the important inputs. A technical gate-keeper for the 
potential client (who, it turned out, was trying to kill the project to advance his own 
agenda) slyly suggested we vary some inputs and see what ensued. ―Try T = 98.6 
degrees.‖ (human body temperature, way below the bounds of normal operation.) I 
argued the test would be senseless, since the input was far outside the model’s training 
bounds, but with much cajoling, I naively complied (See earlier Mistake #7). The model 
was a nonlinear polynomial network, so when given an input value far outside its 
training range its output was ridiculous, as expected, but no amount of calm technical 
explanation around that non-surprising result could erase, in the onlooking decision-
makers mind, the negative impact of the breathtakingly bad result that had briefly 
flashed by. My firm never heard from that company again. Obviously, a model should 
answer ―don’t know‖ for situations in which its training has no standing! 
But, how do we know where the model is valid; that is, has enough data close to the 
query by which to make a useful decision? The simplest approach is to note whether 
the new point is outside the bounds, on any dimension, of the training data. Yet, 
especially in high-d, the volume of the populated space is only a small fraction of the 
volume of the rectangle defined by the univariate bounds. With most real data, inputs 
are very far from mutually independent, so the occupied fraction of space is very small, 
even in low-d. (The data often look to me like a folded umbrella packed diagonally in a 
box.) A second approach, more difficult and rare, is to calculate the convex hull of the 
sample – essentially, a ―shrink wrap‖ of the data points. Yet even this does not always 
work well to define the populated space. Figure 1 illustrates a 2-d problem similar to one 
I encountered in practice (in higher-d) in an aeronautical application. There, practical 
constraints on joint values of physical variables (e.g., height, velocity, pitch, and yaw) 
caused the data to be far from i.i.d. (independent and identically distributed.) I noticed 
then, as in the Figure, that astonishingly, even the sample mean of the data, μ, was 
outside the true region of populated space! 



It is a Mistake to Answer Every Inquiry  January 2015 

Elder Research, Inc.  Page 3 of 6 

 
Figure 1: Example 2-dimensional problem for which the data mean (open box symbol) is outside 

the bounds of the (crescent-shaped) valid space 

 
An approach for flagging some outliers (though perhaps not all) that has helped the few 
times we’ve tried it, is to fit a very responsive, nonlinear model to the data, for instance 
through a polynomial network (Elder & Brown, 1992). High-order polynomials quickly go 
toward infinity outside the bounds of the training data. If the output estimate resulting 
from an unbounded, nonlinear (and even overfit) model is well beyond the output 
bounds, then it is very likely the input point is outside the training data. If a training data 
point had been near that new input point, it would have better constrained the model’s 
estimate. 
 
Just as it is essential to know where a model has standing – i.e., in what regions of input 
space its estimates might be valid – it is also useful to know the uncertainty of 
estimates. Most techniques provide some measure of spread, such as s, for the overall 
accuracy result (e.g., +/- 3% for a political survey), but it is rare indeed to have a 
conditional standard deviation, σ(x), to go with the conditional μ(x). That is, to have a 
different uncertainty level for each region of input space, as determined by the data. A 
valuable area of research, I believe, would be to enhance existing modeling methods to 
estimate certainty conditioned on where in input space one is inquiring. 
 
I did develop one estimation algorithm, which I call Delaunay Triangles, to depend 
strongly on σ(x); it’s goal is to make optimal use of experimental information for global 
optimization (Elder, 1993). For systems where results are expensive to obtain (e.g., 
samples from drilling, or other physical experiments), the challenge is to find, as 
efficiently as possible, the location (input) with the best result (output). If several 
samples and their results are known, one can model the score surface (relationship 
between input vector and output score) and rapidly query or traverse the surface of the 
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model to find the best location for the next probe (i.e., experimental settings to employ). 
If that result isn’t yet good enough (and budget remains to keep going), its sample-result 
information could be used to update the model for use in searching for the new best 
probe location. The overall estimation surface consists of piecewise planes, as shown in 
Figure 2, where each region’s plane has a quadratic variance ―canopy‖ over it, as 
shown in Figure 3, revealing how the uncertainty of the estimation grows as one departs 
from the known points (the corners).1 This approach worked extremely well, for low (1-
12 or so) dimensions, and the resulting multi-modal search algorithm, GROPE (Global 
Rd Optimization when Probes are Expensive) took the fewest probes of all then-existing 
algorithms to converge close to the answer on an academic suite of test problems. By 
having, for every location, x, an estimate of the mean, μ(x), along with its 
uncertainty, σ(x), the algorithm could, with every new result, refine its estimates and 
reduce its uncertainty, and thereby zero in on the locations with the greatest potential. 

  

    
    

Figure 3: Each simplex (e.g., triangle in 2-
dimensions) of the Delaunay method 
(Elder, 1993) pairs a planar estimation of 

μ(x) with a quadratic estimation of σ2(x). 

Figure 2: Estimation surface of Delaunay 
Triangle method (Elder, 1993) is 
piecewise planar. (The underlying function 
surface is represented here by a mesh.) 
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1 The modeling technique developed for GROPE was driven by the special 

requirements of optimizing an unknown function – especially, that the response 
surface model had to agree exactly with the known samples. If one assumes the 
least about the response surface – that there is Brownian motion (or a random 
walk) between the known points — then the ideal estimator turns out to be a 
plane. So, μ(x) is a piecewise planar collection of simplices (e.g., triangles when 
there are two input dimensions). The tiling or tessellation of the input space is 
done in such a way as to create the most uniform simplices (those with the 
greatest minimum angle), which is performed by Delaunay triangulation (a dual of 
nearest neighbor mapping). The key though, was to pair this with an estimate of 
the standard deviation of μ(x), conditioned on x, σ(x). (The Brownian motion 
assumption drives this to be the square root of a quadratic function of distance 
from the known corners.) Now, with both parts, μ(x) and σ(x), one can rapidly 
calculate the location, x, where the probability of exceeding one’s result goal is 
the greatest. So, the model would suggest a probe location, one would perform 
the experiment, and the result would update the model, with greater clarity on the 
mean estimates (piecewise planes) and reduced variance (piecewise quadratic 
―bubbles‖ over each plane) with each iteration. 
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