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Webinar Agenda

* Introduction to Fraud Analytics

« Elements of fraud detection with case studies
— Data Acquisition and Modality
— Deployment
— Organizational Maturity

e Q&A
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About Elder Research

Elder Research delivers business value through
customizable advanced analytics solutions that solve

your most challenging problems.

GO
SN
& &

20+ years 150+ Data science Trusted
experience customers experts partner

YELDER RESEARCH
b DATA SCIENCE & PREDICTIVE ANALYTICS



Advanced Analytics Is Our Strength
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Data Science and Predictive Analytics

Discovering patterns in past data that can be used to predict the outcome of future
events including statistical modeling, classification & analysis, clustering, optimization
& simulation, and customer segmentation

Text Mining

Understanding information stored in text documents and databases including
document classification, natural language processing, information extraction and
search

Data Infrastructure

Cleaning, preparing, and integrating disparate data sources and building ETL and
data pipelines optimized for advanced analytics

Data Visualization

Making advanced algorithms easily accessible through 2-D & 3-D, statistical and
spatial visualization
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Introduction to Fraud Analytics
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Defining the Problem

* Fraud analytics, as explained to a seven-year
old:

People are trying to do bad things, usually to
get more money. We are trying to stop them
using data.
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Data Triage




Data Triage

If you can only examine so many people, how do
you decide which ones to investigate?
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Data Triage

You could search randomly...
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Data Triage




Data Triage

Or you can use a statistical model...
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Data Trlage




How Is fraud detection different?

“Fraud is... well-

considered, FRAUD
imperceptibly ANALYTICS

USING DESCRIPTIVE,

concealed, PREDICTIVE, Ano
. . SOCIAL NETWORK
time-evolving, and TECHNIQUES
often carefully R Fwn oereoron M
organized crime vu
which appears in
many types of forms” e
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How Is fraud detection the same?

 The good news is
that analytics best

practices also apply e > —

to fraud detection! — p——

— Problem context and  ourn
framng 5 T

— Data ingestion and L E
transformation for
modeling

— Appropriate

technology stack
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Some Dimensions to Consider

« Data Acquisition and om Q A
Modality __Bi
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* Deployment
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Data Acquisition and Modality
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Data Hunter/Gatherer

« Data starved
— ...Not very wide
— ...Not very rich
— ...Not many known cases (targets)
— ...Not easily accessible (silos)
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Data Hunter/Gatherer
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Data Hunter/Gatherer
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Data Hunter/Gatherer
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Consider the modality of your data

e Different modes of data lend themselves to
various types of techniques
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Various Data Types

(time series) (image)

Temporal Spatial

Graph

(network)




Adding Complexity

 Advanced data Add Temporal
types each add a - ITI b| I| |: Ordering — lr | |I
new type of - el _ IelmFOIraI
CompleXIty to (Time Series)

tabular data

« They allow the Add Links
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- Add Spatial =
rgpresentatlon of Ordering E&Qi
richer concepts... o
« ... but, require
special techniques _ SO lér;\ lhl ]
— ! ecClal Case P B .
to model — Spatial e [ ©aPh
(Image) (Network)
(" YELDER RESEARCH s

b DATA SCIENCE & PREDICTIVE ANALYTICS




Text Data: Transformation Required

« Unable to process symbolically, must convert to
numerical form

« Then apply all usual techniques for that data

type -

“Bag of Words” Distributional
1 \ Hypothesis
BN BEEER
— Tabular — — Sequence
HEEEENE NN
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Example: Spatial Data
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Example: Spatial Data
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Example: Spatial Data
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« Anomaly detection to
R look for unusual and
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Example: Graph Data
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Example: Graph Data
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Example: Graph Data

R

Diffusion patterns

received

Legend

Medical
Provider
Claimant
( YELDER RESEARCH - Prescription
b DATA SCIENCE & PREDICTIVE ANALYTICS Drug




Example: Graph Data
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Example: Graph Data
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Move from model to solution
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Consider Your Goals

« What is your goal when deploying a fraud
analytics solution?

5 —
Human Decision Fully Automated
Support Solution
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Move from model to solution

* "Model deployment” is not a machine learning
problem, it's a solution development problem

— Who is the customer?

— What is their job function?

— What pain points do they experience regularly?
— Are there efficiency gain opportunities?
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Move from model to solution

What the analyst sees __~ Risk Score — P—

What the data
scientist does
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Move from model to solution

Research *
Environment

Production
Environment
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Case Study

 Investigative Organization

« Excel spreadsheets with SSN'’s and risk scores
(pretty good models)

* No traction and adoption with the customer
(analysts and investigators)
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Case Study

 Investigative Organization

« Excel spreadsheets with SSN'’s and risk scores
(pretty good models)

* No traction and adoption with the customer
(analysts and investigators)

« It didn’t address a pain point — it created additional
uncomfortable steps in their process
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Case Study

« Took a customer-centric approach
— Engaged the customer
— ldentified pain points
— Built a solution around their natural workflow
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Case Study

Took a customer-centric approach
— Engaged the customer
— ldentified pain points
— Built a solution around their natural workflow

Data access
Data story telling
“Simple” Automation
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Case Study

Took a customer-centric approach
— Engaged the customer
— ldentified pain points
— Built a solution around their natural workflow

 Data access
« Data story telling
e “Simple” Automation

« That led to more adoption of the solution and models
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More than a good model...
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More than a good model...

« Assess the maturity of your organization:

« Driving an entire organization to be more
analytically minded and data-driven
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Analytics as Disruptive Force

disrup-tive rdis'reptiv/

Adjective
Causing or tending to cause disruption

Synonyms
destructive
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Case Study

« Two Federal Investigative Agencies

* We solved the same technical problem (very
well) at both places

 However...
— At Agency 1 - resulted in zero engagement
— At Agency 2 - resulted in organizational adoption
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Case Study

« Two Federal Investigative Agencies

* We solved the same technical problem (very
well) at both places

 However...
— At Agency 1 - resulted in zero engagement
— At Agency 2 - resulted in organizational adoption
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Case Study

Infrastructure
— |IT environments, hardware, software, data access

Process
— Agile and CRISP-DM

Analytics
— Sophistication of modeling techniques utilized

People
— Equally talented and technically savvy customers
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Case Study

e Culture........ well........
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Case Study

« Culture........ well........
— Agency 1
 very political CYA leadership team

 lacked organizational vision for analytics
* no sense of mission urgency
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Case Study

« Culture........ well........
— Agency 1
 very political CYA leadership team
 lacked organizational vision for analytics
* No sense of mission urgency
— Agency 2
» cohesive leadership team

 strong organizational vision for analytics
» strong sense of urgency for the agency mission
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Upcoming Webinar

Detecting Fraud Rings with Graph Databases
Thursday, March 8th 2018 - 2:00-3:00 PM (EST)

This webinar will focus on how to identify suspicious behavior using
tools and technology suited for network analysis, including graph
databases.

Webinar hosts Robert Han (Director and Program Manager,
Washington DC) and Ryan McGibony (Senior Data Scientist)
have extensive experience working on fraud analytics projects
across the federal government and commercial businesses.
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Robert Han

Elder Research
Director and Program Manager
han@elderresearch.com

Miriam Friedel, Ph.D.

Elder Research
Director & Senior Scientist
mirlam.friedel@elderresearch.com

Bryan Jones

Strategy First Analytics
Owner, Principal Consultant
bryan@strategyfirstanalytics.com

Visit our blog at www.elderresearch.com/company/blog
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