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Overview 
A recent article in The Seattle Times, reported that ―an orange used car is least likely to 

be a lemon.‖  This discovery surfaced in a competition hosted by Kaggle to predict bad 

buys among used cars using a labeled dataset.  Of the 72,983 used cars, 8,976 were bad 

buys (12.3%).  Yet, of the 415 orange cars in the dataset, only 34 were bad (8.2%).  The 

full breakdown of bad buy proportion by car color is shown in Table 1 and Figure 1 below, 

where the low proportion of bad buys among orange cars stands out prominently.   

  

Table 1:  Bad Buys by Color 

Row 

 

Color 

 

Count 

 

Bad Buys 

 

Percent 

 
1 SILVER 14875 1843 12.39% 

2 WHITE 12123 1506 12.42% 

3 BLUE 10347 1189 11.49% 

4 GREY 7887 911 11.55% 

5 BLACK 7627 858 11.25% 

6 RED 6257 825 13.19% 

7 GOLD 5231 737 14.09% 

8 GREEN 3194 402 12.59% 

9 MAROON 2046 260 12.71% 

10 BEIGE 1584 211 13.32% 

11 BROWN 436 56 12.84% 

12 ORANGE 415 34 8.19% 

13 PURPLE 373 56 15.01% 

14 YELLOW 244 34 13.93% 

15 OTHER 242 29 11.98% 

16 NOT AVAIL 94 24 25.53% 

17 NULL 8 1 12.50% 

18 TOTAL 72983 8976 12.30% 
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Figure 1: Proportion of Bad Buys by Color 

 

But how unusual is this low proportion?  That is, assuming the true proportion is really 

equal, what is the likelihood that it could have occurred by chance for a random partition 

of that size?  Such a calculation takes into account the numbers of cars making up both 

proportions (good and bad Orange vs. good and bad non-Orange1).  When we apply a 1-

sided statistical hypothesis test for equality of proportions between two samples it yields a 

p-value of 0.00675 (see Equation 1).  In other words, the hypothesis test reveals that if 

the underlying reality is that the proportion of bad buys among orange cars is really equal 

to the proportion of bad buys among all non-orange cars, then the probability that one 

would observe a sample proportion for orange cars that is so much lower than the sample 

proportion for non-orange cars (given sample sizes of 415 and 72,466, respectively) is 

only 0.675%. 
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>  prop.test(c(34,8917),  c(415,72466),  alternative="less")$p.value Eqn. 1 (in R 

code)  

[1] 0.006754577 

Given such a low p-value, it seems likely that orange cars really are better buys.  Put 

another way, since the default or ―null‖ hypothesis (that the proportions are actually equal) 

is less than 1% likely, there’s more than a 99% chance that the alternative hypothesis 

(that orange cars are really good buys) is true. 

Interpretation 
Why orange?  The Seattle Times reports ―As for why orange used cars are most likely to 

be in good shape, the numbers did not hold the answer.  One notion was that flashy 

colors may only attract car fanatics who would be more likely to take care of their vehicles. 

That didn’t pan out, however, since the least well-kept cars turned out to be purple.‖  

Brainstorming we wondered if, perhaps, orange cars tend to be made by only a few 

manufacturers, or only represent a few makes or models, or even years of production; i.e., 

that orange is confounded (mixed up with) another variable actually related to reliability.  

It’s likely not a cause, but a ―tag-along‖ effect. A colleague suggested that orange may be 

more visible to other drivers and thus those cares are involved in fewer collisions.  The 

opportunity for speculation is endless!  Two comments here: 

1. To really examine these questions would involve building a data mining model from 

the full set of Kaggle contest data, which included many other variables. 

2. We have learned to not trust the interpretability of a model.  That is, that 

explanations of why some finding might be true are readily invented after a finding is 

made! 

We decided to pause at this point of knowing just the information related to one variable 

(color) and explore the narrow, but important question of what the true findings should be.  

What colors are most interesting related to reliability and how confident in those results 

are we?  This paper establishes a framework for approaching problems of this kind and 

shows how the immediate finding might not be the most interesting, and how the 

likelihood of finding something that appears interesting only by chance is much greater 

than traditional statistical tests reveal.  And lastly, it explains Target Shuffling2 as an 

accurate way to answer that key statistical question: How likely could a result as strong as 

this have occurred by chance? 
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Where Did Our Hypothesis Come From? 
As we consider the strength of our conclusion about orange cars, the first thing we should 

note is that that hypothesis was only developed after seeing the data.  No one surmised it 

and then went out and collected data to test that idea.  Rather, data was collected, and 

the graph revealed that orange is an outlier, then we applied a hypothesis test to its 

numbers.  The importance of this distinction is probably not obvious, but can be made 

clearer by a simple illustration.  Imagine that I report to you the results of a test I ran to 

determine if a coin is fair.  I flipped the coin 10 times, and discovered that it landed heads 

every single time.   

Applying a hypothesis test I find that I can reject the null hypothesis (that the coin is fair) 

with a p-value of 0.001953.  In other words, there is only a 0.195% chance that a fair coin 

would land heads on all 10 flips, so we could conclude (at a 99.8% confidence level) that 

this coin must not be fair.  It is still possible for the coin to actually be fair, but the 

hypothesis test tells us how unlikely that is.  Then, if I reported to you that I tested another 

999 coins, and found that all 1000 of them landed heads every single time, then you 

would likely be convinced beyond all doubt that there is something fishy about the whole 

lot of them.  10,000 heads and 0 tails!  All of the coins must surely be biased.  However, if 

I then mentioned in passing that I had also happened to test 999,000 other coins, which 

resulted in a variety of other proportions of heads and tails, would that change things?  

These are all separate coins, and not repeated trials of any of the earlier coins I told you 

about.  Every test is independent, so they don’t affect each other… so how could they 

matter?  Intuitively though, you know they could!  You would want to know right away 

whether I identified ahead of time the 1,000 coins which always landed heads or if I first 

tested all 1,000,000 together and only picked out the 1,000 afterward.  You know that if I 

were to test 1,000,000 coins, I would expect some of them to land heads every single 

time even if every single one was fair!  In fact, if you do the math4, you will find that one 

would expect 977 out of 1,000,000 coins to land heads all ten times on average.  

Therefore, finding 1,000 coins which landed all heads is not surprising at all, and should 

not be used as evidence to suggest that those 1,000 coins are biased5.  The expected 

distribution of each outcome (i.e., 9 of 10) is shown in Figure 2 and Table 2.  
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Figure 2: Expected Distribution Flipping 1M Fair Coins 10 Times Each 

 

Table 2:  Expected Results Flipping 1M Fair Coins 10 Times Each 

Heads 

 

Percent 

 

Count 

 
0 0.1% 977 

1 1.0% 9,766 

2 4.4% 43,945 

3 11.7% 117,188 

4 20.5% 205,078 

5 24.6% 246,094 

6 20.5% 205,078 

7 11.7% 117,188 

8 4.4% 43,945 

9 1.0% 9,766 

10 0.1% 977 
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This simple example shows that the significance of the finding that 1,000 coins landed all 

heads rests entirely on the question of whether or not I had hypothesized ahead of time 

that these particular coins were biased, and the other 999,000 not, or, if I simply tested all 

1,000,000 coins indiscriminately and picked out the 1,000 based on the results. 

In the same way, for our present investigation involving orange cars, the question of 

when we arrived at the hypothesis that orange cars are good buys is important.  Since 

the hypothesis was arrived at only after viewing the data, it follows that had the data been 

different, the hypothesis itself may have changed.  Obviously, if green cars happened to 

have had a strikingly low proportion, we would have tested the hypothesis that green cars 

are good buys.  Or, if red cars happened to have had a strikingly high proportion, we’d 

have hypothesized that red cars are bad buys.  If we assume that the true proportion of 

bad buy’s among all cars for all colors is actually identical, the probability that one would 

find a statistically significant difference between red cars and non-red cars is low, and the 

probability that one would find a statistically significant difference between green cars and 

non-green cars is low.  But the probability that one would find a statistically significant 

difference between some color car and all other colored cars might not be that low!  In 

fact, if the number of colors was great enough, the prospect of finding a statistically 

significant difference would be almost certain (just as in the case of finding a thousand 

coins that land heads 10 times in a row if we flip 1 million of them). 

What we see is that statistical hypothesis tests only work when the hypothesis comes first, 

and the analysis second.  One cannot use the data to inform the hypothesis and then test 

that hypothesis on the same data.  That leads to overfit and over-confidence in your 

results, which leads to the model underperforming (or failing entirely) on new data, where 

it is most needed. 

The Danger of Vast Search 
And yet, how do we know what to hypothesize?  Isn’t the great strength of data mining 

that the computer can try out all sorts of things are report back which one might work?  

Yes, we can and often should use data to drive and develop our hypotheses, but we must 

then test those hypotheses on unseen data.  And to get an idea of the significance of a 

finding without such unseen data we have to ask a broader question than how likely is 

this exact finding to have occurred by chance.  We have to ask: ―How likely is it that any 

finding that this interesting could occur by chance?‖ 

Data Mining has the power and peril of what we call the ―vast search effect‖:  If you 

search hard enough over enough variables, we are sure to find something ―interesting‖, 

whether that finding is real or the effect of random chance.  Hypothesis tests are 

supposed to tell us how likely it is that our finding could have happened by chance, but 
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they fail to do so accurately when the hypothesis itself is contingent on the very same 

data against which it is tested. 

Does this mean that orange cars aren’t really good buys after all?  No, they still could be.  

But what this means is that the p-value on which that conclusion is based is misleading. 

We must either take into account the fact that we both developed and tested our 

hypothesis using the same data, or find new data on which to test our hypothesis in order 

to calculate a more accurate probability.  Three possible approaches to doing this are 

described below. 

Solution 1:  Partitioning 
As mentioned previously, there is nothing wrong with using data to develop hypotheses.  

A glance at Figure 1 reveals that the proportion of bad buys among orange cars is lower 

than that of other colors; and unexpected, data-driven hypotheses like this often lead to 

novel and beneficial discoveries.  But, to really test this hypothesis, we should now go out 

and collect data on a whole new group of used cars and see how well it holds up.   

However, that is easier said than done! It takes a lot of work to survey thousands of used 

car buyers to see if the car panned out or not (and over what time frame, etc.).  For this 

reason, data miners partition the data to mimic repeated experiments.  The idea is very 

simple.  After receiving the dataset (in this case 72,983 records) and before analyzing it, 

split it into a training partition and a testing (or evaluation) partition.  If the cases are not 

independent, this split must be done carefully, according to time say, but here may be 

done randomly.   

The goal is to make the testing data simulate future data.  Often one uses, say, 70% of 

the data for training, and the remaining 30% for testing.  The analyst uses the training 

dataset to build a model or explore the data to come to some hypothesis.  Then he or she 

employs the testing dataset to test that model or hypothesis on unseen data.  The test 

step simulates the use of the model in the real world.  There are a few things to watch out 

for when testing the data. For example, if this test is performed too often (i.e., if there are 

too many iterations of training), the test data can become partly ―known‖ to the 

user/model, and it will lose some of its power to simulate future reality.  Also, the training 

data might—at random or not—be too different from the testing data, and thus we 

recommend cross-validation or bootstrapping to do an even better job of testing. 

Unfortunately, for our problem, reserving data is not something we can go back and do 

now that we have failed to do it in the first place!  We will show a simple example of how 

one might have applied this approach to the problem at hand, but want to underscore that 

it is too late to actually use it. 

Imagine that we have just received the 72,983 cases of used cars labeled with color and 

quality.  Ideally, we might want to partition according to time, but because we do not have 
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that information, we will randomly partition the dataset into 60% training and 40% testing 

(Table 3).  Having done so, our proportion chart would look like Figure 3. 

 

Figure 3: Bad Buy Proportion by Color (Training Partition 60%) 

Table 3:  A 60% Random Sample 

Row Color Count Bad Buys Percent 

1 SILVER 8,858 1,080 12.19% 

2 WHITE 7,233 919 12.71% 

3 BLUE 6,210 726 11.69% 

4 GREY 4,709 563 11.96% 

5 BLACK 4,593 511 11.13% 
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6 RED 3,749 503 13.42% 

7 GOLD 3,136 443 14.13% 

8 GREEN 1,893 245 12.94% 

9 MAROON 1,223 160 13.08% 

10 BEIGE 935 120 12.83% 

11 BROWN 280 38 13.57% 

12 ORANGE 253 20 7.91% 

13 PURPLE 231 39 16.88% 

14 YELLOW 153 24 15.69% 

15 OTHER 142 16 11.27% 

18 TOTAL 43,598 5,407 12.40% 

 

Now based on this training dataset (and pretending we have never seen the full dataset!), 

we would still hypothesize that the orange car proportion is interestingly low.  It is 

conceivable that we could have chosen a partition that would not have led to this 

hypothesis (or in which it would be hard to tell if we would have come to such a 

hypothesis), but in this case orange remains an obvious outlier.  Now, let’s assume that 

we wish to test the hypothesis that orange cars have a lower proportion of bad buys than 

non-orange cars.  Our testing dataset (Table 4) looks like Figure 4. 
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Figure 4: Bad Buy Proportion by Color (Training Partition 40%) 

 

Table 4:  Test Dataset (Remaining 40% sample) 

Row 

1 

Color 

SILVER 

Count 

6,017 

Bad 

Buys 

763 

Percent 

12.68% 
2 WHITE 4,890 587 12.00% 

3 BLUE 4,137 463 11.19% 

4 GREY 3,178 348 10.95% 

5 BLACK 3,034 347 11.44% 
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6 RED 2,508 322 12.84% 

7 GOLD 2,095 294 14.03% 

8 GREEN 1,301 157 12.07% 

9 MAROON 823 100 12.15% 

10 BEIGE 649 91 14.02% 

11 BROWN 156 18 11.54% 

12 ORANGE 162 14 8.64% 

13 PURPLE 142 17 11.97% 

14 YELLOW 91 10 10.99% 

15 OTHER 100 13 13.00% 

18 TOTAL 29,283 3,544 12.10% 

 

Applying a 1-sided hypothesis test for equality of proportions between the sample of 

orange cars and non-orange cars in the testing partition yields a p-value of 0.109 

(Equation 2). 

> prop.test(c(14, 3530), c(162, 29121), alternative="less")$p.value   (Eqn 2 in R code)  

[1] 0.1087065 

This p-value indicates that the proportion of bad buys among orange cars is low, but not 

low enough to be conclusive at the typical levels of significance.  (In medical journals for 

example, a significance of below 5% is required to publish.)  In other words, we would 

hesitate to conclude that orange cars have a true proportion of bad buys lower than non-

orange cars. 

This result reveals the fragility of the original, seemingly confident finding, but is not a 

solution to the actual issues of what are the most interesting findings, and how unlikely 

they are.  The p-value for the test dataset is much higher than we previously saw 

primarily because the dataset is smaller, so if we put a different percentage of cars in the 

testing sample we’d come up with a different p-value.  Partitioning tends to reduce 

significance, since it’s harder for a random finding to show up on both data sets, so it 

makes a step in the right direction of reducing the vast search effect.   

Yet, even it may not protect us if we are not careful.  We often find ourselves making a 

hypothesis using the training partition, evaluating that hypothesis on the test partition, and 

then returning to training to revise that hypothesis or make new ones.  By alternating 

between training and testing, we’ve created an information ―leak‖ from the future (testing) 

to the present (training), and are increasing the chances of fooling ourselves.  For this 

reason data miners often split the data into three groups (training, validation, and testing), 
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to allow themselves to employ some back- and-forth between the first two, but saving the 

test dataset for a single, final evaluation. 

Solution 2:   Mathematical Inference 
We’ve established that the best way to determine if orange cars are really better buys is 

to gather brand new data and test our hypothesis on that data.  However, when that is 

impractical, we noted that we could have used partitioning to both develop and test our 

hypothesis using the existing dataset.  But since it is too late for that, is there anything 

else we can do?  Is there some way to account for the fact that we both developed and 

tested our hypothesis on the same dataset?  The following two approaches are attempts 

to do that.  Each has limitations, but both are useful. 

The key to both of these solutions is in redefining our question.  Previously, we ran a 

hypothesis test which answered, ―How likely is it that the proportion of bad buys among 

orange cars would be so low by chance alone?‖ But, this leads to a misleading result 

because orange was self-selected based on its own ―interestingness‖.  A better question 

would be, ―How likely is it that the proportion of bad buys among some-colored cars 

would be so unusual by chance alone?‖  This question is better because it compares the 

most interesting observed result (orange), not with what we would expect at random from 

orange, but with what we would expect at random from the most interesting color 

(whatever it may be).  In this way, it assumes that we could have selected any one of the 

15 different colors5, and accounts (at least in part) for how our hypothesis itself could 

have been different if the data were different. 

You may have noticed that we used the term ―most interesting‖, rather than ―lowest 

proportion‖. The reason for this is two-fold.  First, we should recognize that a color-group 

having an especially high proportion of bad buys might also be interesting.  We might 

want to know what color car to buy as well as what color to avoid, so we will consider both 

possibilities.  Second, we use the term ―interesting‖ because a low proportion, as shown 

in the Figures, does not take into account sample size.  If, for example, there were 3 neon 

cars in the dataset, and none were deemed bad buys, then its sample proportion would 

be 0%!  But obviously that would not convince us that neon cars are better buys than 

other colors, as our intuition would tell us we don’t have enough data.  For this reason, a 

better measure of ―most interesting‖ is lowest p-value. P-values take sample size into 

account, providing a measure of how unusually high or low a proportion is.  Therefore, 

what we want to determine, is the probability that the lowest p-value, for any color, is at 

least as low as the observed p-value for orange, under the null hypothesis that it is truly 

all random. 

Our first cut at this is through algebra. Orange’s p‐value of 0.00675, means that 0.675% 

of the time, a group the size of orange would have a proportion that low, by chance alone6.  

Additionally, it implies that 1.35% of the time (twice that often), orange would have a 
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proportion that is that extreme (low or high), by chance alone.  Furthermore, because 

sample size is accounted for, it implies that 0.675% of the time, red would have a 

proportion that is that unusually low; and that 1.35% of the time, red would have a 

proportion that is that unusually extreme, by chance alone.  Now given that this holds for 

every color, and that there are 15 colors total, we can estimate the probability that no 

color would have a result as interesting as orange did by calculating the probability of ―not 

orange‖ and ―not blue‖ and ―not gold‖ and ―not green‖ and so on.  In probability, ―and‖ 

means multiply, and ―not orange‖ means ―1-orange‖.  Therefore, we can calculate the 

probability of ―not any color‖ as follows:  

Number of colors = 15 

2‐sided (as extreme as):  P = (1 – 0.0135)^15 = 0.816  

1-sided (as low as):  P = (1 – 0.00675)^15 = 0.903 

This means that 81.6% of the time, no color would have a result as extreme as the result 

we actually observed in orange, or conversely, that 18.4% of the time, some color would.  

Now this suggests that our result for orange is somewhat unusual, but not that unusual, 

and certainly much less unusual than our original p-value suggested.  Additionally, even if 

we apply a 1-sided test, and only consider unusually low (not high) proportions, our 

calculations suggest that we should still expect to find a proportion at least as unusually 

low as that of orange 9.7% of the time.  Therefore, a p‐value of 0.097 or 0.184 would be a 

much better indicator of true significance than 0.00675. 

Solution 3:  Simulation 
Another way to answer the question ―How likely is it that the proportion of bad buys 
among some-colored cars would be that unusual by chance alone?‖ is to apply a 
technique called ―target shuffling‖ (invented or rediscovered, most likely, by one of us).  
This technique is a form of simulation in which we essentially repeat our experiment many 
times to simulate the results one might expect at random.  We call it target shuffling 
because the technique involves randomly ―shuffling7‖ the target (dependent) variable, 
while leaving the rest of the dataset in place.  This is illustrated for a small sample of data 
in Figure 5. 
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Figure 5:  Example of Target Shuffling 

 

Target shuffling creates a dataset in which we know that no real relationship exists 

between the target variable and any input variable. That is, the null hypothesis holds.  It is 

to this shuffled dataset that we apply our new hypothesis, model or modeling process8, 

and then measure the new significance of our hypothesis or performance of the model.  

By repeating this process many times, we are able to create a distribution of 

―performances‖ which we know to be attributable to random chance alone.  Therefore, we 

are able to compare our results on real data to our ―possible‖ results on random data to 

get a better sense of just how significant our original results really are. 

This technique has great value for at least three reasons.  First, with today’s computing 

power it is often much faster and easier to simulate results than to go through the 

sometimes painstaking effort of accurately calculating them!  Second, this technique is 

typically much more intuitive to a non‐statistician, and thereby often leads to results which 

are viewed as more credible by those who do not understand the underlying statistics.  

Third, this technique is a great way to confirm and double check a result which has been 

calculated statistically, since everyone makes mistakes! 

In order to apply target shuffling to our problem, we followed this process: 
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1. Shuffled our vector of bad buys (containing 8,951 Trues and 63,930 Falses) 
2. Aggregated to get bad buy count by color 
3. Ran an equality of proportions hypothesis test for each color vs. all other colors 
4. Determined the minimum p‐value across all colors 
5. Repeated this process 10,000 times 

When running a two-sided hypothesis test, and thereby testing for extreme proportions 

(whether high or low), we found the distribution of Figure 6, in which 1,635 out of the 

10,000 trials (16.4%) yielded a minimum p-value of less than or equal to our threshold 

value of 0.0135. 

 

Figure 6: Minimum P-values (2-sided test shuffled) 

This would indicate that we could expect some‐colored car to achieve a result as extreme 

as orange’s roughly 16.4% of the time if no difference in proportion between car colors 

truly exists.  As before, we also ran a 1-sided hypothesis test to test for low proportions 

only, and found that 715 out of 10,000 trials (7.2%) yielded a minimum p-value of less 

than or equal to our threshold value of 0.00675 (Figure 7). 
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Figure 7: Minimum P-values (1-sided test shuffled) 

 

This would indicate that we could expect some‐colored car to achieve a result as 

unusually low as orange’s roughly 7.2% of the time if no difference in proportion between 

car colors exists. 

Now, for the more curious reader, there are a few subtleties to observe.  First, we have 

used ―shuffling‖ rather than ―re-sampling‖.  Or, in other words, we have used sampling 

without replacement rather than sampling with replacement to construct each dummy 

target vector.  Shuffling has the advantage of limiting the sources of variation by keeping 

the overall bad buy proportion constant.  However, it also introduces a slight dependence 

between the proportion of bad buys for any given color and the proportion of bad buys 

among all other colors9.  Therefore, we tried repeating our experiment using sampling 

with replacement and achieved simulated p-values of 0.1624 and 0.0721, respectively, 

which nearly match our previous values of 0.1635 and 0.0715.  So the type of sampling 

used is a minor factor. 
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The second subtlety is that our simulated p‐values of 0.1635 and 0.0715 are more 

different from our algebraic p-values of 0.184 and 0.097.  A major reason for this 

becomes clear when we look at the distribution of all p-values for all colors over the 

10,000 iterations with replacement10 as in Figure 8. 

 

Figure 8: P-values for 2-Sided Test with Replacement 

 

Note that there is a major spike at p = 1.  The reason for this boils down to the fact that 

the distribution of sample proportions is non-continuous because we are working with 

whole numbers.  Analogously, if we ran a binomial hypothesis test to test whether a coin 

is fair with 5 trials, the only possible resulting 2-sided p-values would be 0.0625, 0.375, 

and 1, as shown in Table 5: 



Are Orange Cars Really not Lemons? 

Elder Research  Page 19 

 

 

 

Table 5: P-Values for Coin with 5 Flips 

Heads Percent P-value 

0 3.1% 0.0625 

1 15.6% 0.375 

2 31.3% 1 

3 31.3% 1 

4 15.6% 0.375 

5 3.1% 0.0625 

 

Let’s consider the p-values in the coin experiment of Table 5, 6.25% of the time the 

outcome is either all or no heads, and the p-value for each of those cases is 0.0625.  

Thus, 6.25% of the time the p-value is <= 0.0625. Likewise, 37.5% of the time the p-value 

is less than or equal to 0.375.  Yet, it is not true that 50% of the time the p-value is less 

than or equal to 0.5.  Rather, that is the case only 37.5% of the time! P‐values of 1 are 

very common.  Combining many such distributions together (as happens with multiple 

bins such as color) produces distributions like Figure 8, in which there is a piling up of 

values at 1, and in which the proportion of p-values less than or equal to a given value 

are actually not equal to the value itself, as one might theoretically expect.  For example, 

the true proportion of p-values that were less than or equal to 0.5 was only 47.8%, rather 

than 50% as expected; and the true proportion of p-values that were less than 0.0135 

was only 0.0120711.  This explains why our simulated p-value is a bit less than the one 

we calculated, and also serves to illustrate the value of simulation, as effects like this are 

very hard to anticipate! 

But There is More to Discover… 
Before drawing any final conclusions, note that the hypothesis test for equality of 

proportions is not limited to comparing only two samples.  In fact, it can compare n-

samples, and provide the probability that the total variation between them would be as 

great if all were drawn randomly from populations with matching proportions.  Therefore, 

we can easily test the hypothesis that the proportion of bad buys among all colored-cars 

is the same. 

> prop.test(c(1843, 1506, 1189, 911, 858, 825, 737, 402, 260, 211, 56, 34, 56, 34, 29), 
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+ c(14875, 12123, 10347, 7887, 7627, 6257, 5231, 3194, 2046, 1584, 436, 415, 373, 244, 

242), 

+   alternative="two.sided")$p.value  

[1] 5.149562e‐06 

Surprisingly, this test results in a p-value of 0.00000515! In other words, the test suggests 

that there is almost no chance that the variation in bad buy proportion by car color is the 

result of random variation alone.  Now to understand why this would be, let us look more 

closely. Notice the p-values we obtain if we apply a two‐sided test for equality of 

proportions between each color and all other colors in the original dataset (Table 6): 

Table 6: P‐Values for Proportion of Bad Across all Colors (Either High or Low) 

Row 

1 

Color 

SILVER 

Count 

14875 

Bad Buys 

1843 

Percent 

12.39% 

P-value 

0.66220 
2 WHITE 12123 1506 12.42% 0.61504 

3 BLUE 10347 1189 11.49% 0.00858 

4 GREY 7887 911 11.55% 0.03786 

5 BLACK 7627 858 11.25% 0.00393 

6 RED 6257 825 13.19% 0.02398 

7 GOLD 5231 737 14.09% 0.00004 

8 GREEN 3194 402 12.59% 0.61110 

9 MAROON 2046 260 12.71% 0.57452 

10 BEIGE 1584 211 13.32% 0.21678 

11 BROWN 436 56 12.84% 0.77514 

12 ORANGE 415 34 8.19% 0.01351 

13 PURPLE 373 56 15.01% 0.12541 

14 YELLOW 244 34 13.93% 0.49007 

15 OTHER 242 29 11.98% 0.96532 

16 TOTAL 72881 8951 12.28%  

 

 

 

As before, we see that orange has a p-value of 0.0135.  Yet, surprisingly, this is the 4th 

lowest (most interesting) p-value! In fact, the p-value for gold is over 300 times as 

significant as that of orange!  No color has a proportion as different from the mean as 

orange does, but when sample size is accounted for, we find that the observed 

proportions for blue, black, and gold are all more unusually extreme than that of orange.  
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In fact, the proportion for gold appears to be so unusually high that even with the vast 

search effect it would appear highly improbable to have occurred by chance. 

What then does this mean?  Are we to conclude that gold cars are bad buys?  Well first, 

note that statistical significance does not necessarily correspond to practical significance.  

The observed proportion of bad buys among gold cars is 14.1%, which is only 2% higher 

than the observed proportion in non-gold cars (12.1%).  This might be useful information, 

but is less useful than it would be to know that the true proportion of bad buys among 

orange cars is actually ~ 4% lower than that of non-orange cars.  Second, we recognize 

that it is possible that this difference in proportion is attributable to some sampling bias or 

correlated factor, and not to car color, per se.  For example, perhaps bad buy proportion 

varies with the age of the vehicle, and car color preferences tend to vary with time. 

Nevertheless, it seems convincing that there is something non-random in the relationship 

between car color (especially gold) and bad buy proportion, and it would likely be worth 

further investigation to find the reason(s). 

Conclusions 
Note that the truly interesting result (gold) was not identified originally, but orange was, 

due to the visualization we employed (Figure 1).  The visualization was entirely 

appropriate and accurate, but susceptible to the small-sample effect so it led us astray.  

Only by testing using p‐values, which take into account the sample size, did we learn that 

there were 3 colors more statistically interesting than the visual outlier color orange.  But 

then we learned to not stop at the p-values, or trust them as indicators of likelihood, since 

we didn’t approach the data with well-formed hypotheses to test, which is what p-values 

were designed for.  Any effort to account for the fact that we have both developed and 

tested our hypothesis using the same data is imperfect. 

Better, is to estimate the probability that some-colored cars would have a proportion as 

unusual as was observed in orange.  We tried both mathematical inference and 

simulation (target shuffling), and checked for unusually low or extreme (low or high) 

proportions.  Our results are in Table 7. 

Table 7: Summary of 1-Tailed (as Low as) and 2-Tailed (as Extreme as) Tests by 

Two Methods 

 As Low As As Extreme 

As Mathematical  

Inference 

0.097 0.184 

Target Shuffling 0.072 0.164 
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To assess the true interestingness of orange, we believe that the most realistic probability 

result is that using target shuffling and extremes (16.4%).  It measures the probability of 

some color obtaining a proportion at least as unusually extreme as was observed for 

orange, if the underlying reality is that there is no relationship with color.  We may find this 

worth testing on new data, or even acting on, but it is by no means as unusual a finding 

as we first suspected visually, or even after using our first statistical test (0.675%)! 

Still, based on the equality of proportions test on all colors, it is highly likely that there is 

some relationship between car color and bad buy proportion (p-value of 0.00000515).  

Using p-values to account for sample sizes, three other colors were identified as more 

interesting (statistically) than orange.  Further investigation would be required to reveal 

whether color is fate or, really, whether color is confounded with a more meaningful 

variable.  Of course, if the relationship holds up out-of-sample, it may be worth acting on 

whether we are satisfied with an explanation or not! 

 

1 
Note that NULL and NOT AVAIL were removed from the analysis altogether throughout this paper. This 

was due to small sample size as well as the lack of explanation as to why the color of the car was not 

reported. 

2
 Target Shuffling has been employed by one of us—intermittently, but to great effect—for 20 years, but 

was first written up in 2009 in Chapter 13 of the Handbook of Statistical Analysis & Data Mining Applications, 

by Nisbet, Elder, and Miner. 

3 
Probability of 10 consecutive heads or tails with a fair coin is 0.5^10 or 1/1024.  Therefore the p-value for a 

2‐sided test would be 2/1024 or 0.00195. 

4
 1,000,000 * 0.5^10 = 976.56 

5
 One could, however, hypothesize based on this finding that these 1000 coins are biased and run a 

subsequent test on these particular coins to gain evidence either supporting or refuting this hypothesis. 

6
 Assuming that the true underlying proportion of bad buys among orange and non-­‐orange cars is equal 

7
 Shuffling denotes random reordering or sampling without replacement 

8
 Applying a modeling process would entail re-training the model on the shuffled data and is an effective 

method of testing for overfit 

9
 This is because if the total number of bad buys is t and the number of bad buys for a given color is n, then 

the number of bad buys for all other colors must be t ‐ n 

10
 The distribution for trials with (rather than without) replacement is shown because the distribution is 

cleaner and illustrates the point more clearly 
11 

Not coincidentally, note that 1 – (1 – 0.01207)^15 = 16.7% which is much closer to our simulated p-value 

of 16.2% 
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