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Introduction 
The Data Scientist’s skill set is a collection of coding and analytic talents, usually 
emphasizing predictive analytics knowledge over coding acumen. Josh Wills of Cloudera 
characterizes Data Scientists as people who are, ―Better at coding than the average 
statistician,‖ which is probably accurate but is also setting the programming bar fairly low 
:-). Software engineers put a lot of thought and energy into the minutiae of their projects, 
like code structure and organization, and these considerations are a major contributing 
factor to the success of such projects. Predictive analytics projects have similar pain 
points as software development projects (with some additional aggravations unique to 
analytics), and so the data science community can gain significant benefit by adopting 
strategies and philosophies pioneered in the world of software engineering. Five such 
strategies — version control, code readability, documentation, semantic folder structure, 
and pipelines – are encouraged here. 
 

Version Control 
One of the simplest and most valuable practices that can be adopted by an analytics 
team is version control. Tools such as Git (http://git-scm.com) facilitate collaboration and 
make it significantly easier to recover from problems introduced by changes to code. The 
software development community implemented this tool decades ago, but it has only 
recently begun to gain traction in analytics and research communities. In addition to 
tracking changes to code, version control can also track small data sets, allowing you to 
associate data with each snapshot of your project. This extremely powerful strategy 
allows you to reproduce analytical experiments and audit how data and code changes 
have impacted your model or its results. 
Version control should be applied at the level of the project wherever possible, and the 
project or data product should live under its own repository. For most projects, a 
centralized repository should serve as the canonical codebase. Code in this repository 
should not be modified directly; instead, individual team members should work with local 
development copies of the project and update the centralized canonical codebase by 
―pushing‖ their changes (commits) to it. Segregating team member workspaces like this 
significantly reduces the risk of team members ―stepping on each other’s toes.‖ Branching 
can be leveraged further to prevent analytics experiments, new features, or large 
structural changes from conflicting with other work in the project. An excellent overview of 
several common Git workflows is available on the Atlassian blog.  

Code Readability 
Version control systems force a kind of documentation via commit messages, which 
provide short summaries of the changes associated with a commit. As informative as 
these may be, however, it is critically important that the code itself be descriptive and well 
documented. In-line comments in code can be helpful, but the best code is self-
explanatory and requires few comments to understand, favoring meaningful variable and 
function names over reliance on in-line comments. It is common for scientific 
programmers to liberally use extremely compact abbreviations for variable names, but 

http://git-scm.com/
https://www.atlassian.com/git/tutorials/comparing-workflows
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this practice often leads to code that is difficult for anyone but the author to interpret, and 
the authors themselves may not even be able to readily understand their own work in the 
future. An excellent discussion of the importance and nuance of variable name selection 
can be found in chapter 11 of Steve McConnell’s book Code Complete. 
Intelligent use of whitespace is another way to increase code readability. The python 
language places a strong emphasis on code readability by imparting syntactic meaning to 
white space (among other clever design decisions); consequently, python code often 
reads almost like normal English. Furthermore, objects in python are self-documenting via 
built-in tools, like the dir() and help() commands, that allow a programmer to investigate 
the various attributes of an object that describe how it can or should be used. 

Documentation 
Self-explanatory code is always the goal, but even the clearest code should be 
accompanied by solid documentation. Documentation for functions should include 
descriptions of what they do, what kinds of inputs they take, what the output will look like, 
and perhaps some demo usage. The documentation associated with R packages on 
CRAN serves as an excellent example. Additionally, code files of all kinds (stand-alone 
functions, scripts, libraries, etc.) should include a ―header‖ providing the 
―what/who/when/why/how‖ of the code in clearly identified sections: 
 

 Summary (what does this do?) 

 Author (Who wrote it?) 

 Date (When was this first authored?) 

 Purpose/Motivation (Why was this built?) 

 Usage/Demo (How do I use this?) 
 
Including this level of documentation takes some discipline, but the time taken to write a 
short note immediately after putting code on paper will pay for itself many times over in 
the future when team members can just read the documentation instead of reviewing 
someone else’s code line-by-line to figure out how to use it. 

Semantic Folder Structure 
The ―self-explanatory code‖ philosophy can be extended to the global project structure. A 
powerful strategy is to adopt a semantic folder structure in which the path/to/a/file 
encodes meaning. There should be a clear location to which any particular artifact 
associated with the project should go. Objects stored this way become very easy to find, 
and the location of objects disambiguates their purpose in the project. Example paths 
might be: ./code/modeling /train_ensemble.pyor ./data/raw/transactions.csv; the ―.‖ denotes the 
location of the project folder (NB: this notation is referred to as a ―relative path‖ in contrast 
with an ―absolute path,‖ which gives the explicit location starting with the drive name or 
root directory). 
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Pipelines 
With a semantic folder structure in place, it should be fairly clear what purpose different 
files serve in the project. Even so, their inter-dependencies may not be obvious. The 
sequence in which different scripts need to be executed should be encoded explicitly in 
an executable pipeline that runs the project from front to back, including data ingestion, 
data transformation, model training, ensembling, scoring, and evaluation (for production 
models, there should be a separate pipeline just for scoring). For example, SAS 
Enterprise Miner (EM) provides a GUI for building what it calls ―Process Flows.‖ To 
remove ambiguity, it’s preferable to encode this pipeline in a physical code file outside the 
GUI, which SAS EM is capable of generating. There are several open source solutions to 
assist in constructing these types of pipelines. The classic dependency management tool 
is GNU Make, which remains one of the best tools available today. One of the benefits of 
Make is that it has been in use for a long time, so there are many excellent tutorials for it 
(including several targeted towards analytics projects and researchers). If Make doesn’t 
suit your needs, a popular, more full-featured free tool is Spotify’s Luigi. Luigi is a python 
package for building and handling pipelines. Some of Luigi’s benefits over Make include a 
visualization tool, a scheduler, and more granular failure management. In the absence of 
a dedicated tool, a pipeline can simply be constructed from a master script that runs 
everything in the appropriate sequence. Modularize such a file to allow certain parts of the 
pipeline to be turned on or off as needed. Pipelines constructed from tools like Make 
generally won’t need this kind of modularity since the tool will automatically check to see if 
there have been modifications to upstream data files and only run the downstream code if 
necessary. 

Conclusion 
Data science is an experimental and creative science that often depends heavily on 
software development, but many analytics teams have yet to incorporate several valuable 
techniques pioneered in the software engineering world. Some of the most valuable of 
these, summarized here, are version control, readable code, liberal documentation, 
semantic folder structure and project organization, and pipelining tools. Using these 
strategies in analytics projects requires some overhead but can significantly streamline 
development in the near term and avoid a lot of headaches in the long term. Borrow these 
proactive engineering strategies to achieve long-term analytic success. 
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