By creating a highly accurate and automated redaction compliance capability in software, an enterprise can relegate the function to a batch, or centralized process. A defining characteristic of batch processing is a lack of human intervention, with few, if any, manual processes.
This was a goal we sought for Blackmarker – offloading redaction to a machine, saving money and time.
Saving time and money will always be a worthwhile goal, but there is an additional benefit in that automated redaction compliance makes an enterprise more compliant. In sampling public court records, we found a 25% error rate for documents prepared manually. Our automated process now approaches a 0% error rate.
This is where the Dorothy Vaughn effect is applied, as an AI/ML-based system must be trained. In the context of redaction, this means having the ability to mark documents, typically PDFs, by experienced people aware of the compliance rules/policies of the enterprise. In other words, the system must be “programmed” – not with rules but with examples. This does not require someone to learn Fortran — or any other software programming language — but to work within the system to mark the information for compliance against a finite sample of documents for the AI/ML to learn what targets are required. Targets in this context can be personal identifiable information, personal health information, or other sensitive information as defined by the policy being followed. Once that finite sample of documents is marked, and the performance of the system on new documents is at a level that is equal to, or exceeds that of an experienced human, the system can process similar documents unattended. It should be noted that AI/ML systems, like Blackmarker, maintain multiple models which are pre-trained for certain types of personal information specific to the foreclosure/bankruptcy field.
Another benefit of automating redaction compliance is that while the number of people involved in physical redaction is reduced, the smaller team tasked with training or “programming” the machine reduces the chance of misinterpreting the policies, which can lead to compliance escapes. In the end, the system has fewer moving parts, which translates to fewer mistakes.
Lastly, in our current times, we have seen a lot of churn in the job markets, induced by the pandemic and the other factors it brought on – remote work, tighter job markets, etc. Introducing this type of automation removes a task that nobody, by survey, liked in the first place. Thus, enterprises can market higher satisfaction roles to the job marketplace with a better chance of landed long-term employees.